|
- i Space for learners

Gauhati University notes
Institute of Distance and Open Learning

IT-02

INTRODUCTION TO PROGRAMMING

Contents:

Unit- 1 : Introduction to C

Unit-2 : History of C, VariablesConstants, Expressions and Operators
Unit- 3 : Control Statements, DecisionControl Statements

Unit- 4 : Arrays and Strings

Unit- 5 : Functions

Unit- 6 : Structures and Unions
Unit- 7 : Pointers

Unit- 8 : C Preprocessors and Command LineArguments and Files J

Contributors:

Mrs. Pallabi Saikia Unit- 1
Assistant Professor of Computer Science
GUIDOL

Mrs, Mazida Akhtara Ahmed Unit- 2
Guest Teacher, Dept. of IT
GUIDOL

Dr. Ridip Dev Choudhury Unit- 3
Assistant Professor of Computer Science
GLIDOL

Dr. Swapnanil Gogoi Uniits- 4 & 7
Assistant Professor of Computer Science
GUIDOL

Dr. Khurshid Alam Borbora Lmit- 5
Assistant Professor of Computer Science
GUIDOL

Dr. Pranab Das Unit- 6
Assistant Professor, ADU

Mr. Hemanta Kalita Unit- 8
Assistant Professor of Computer Science
GUIDOL

Course Coordination:

Prof. Amit Choudhury Director, IDOL, Gauhats University
Dr. Anjana Kakoti Mahanta HOD, Dept. of Computer Science, G,
Content Editor:

Prof. Kandarpa Kr. Sarma HOD, Dept. Electronics &
Communication Engineering, GUIST

Prof. Anjana Kakoti Mahanta HOD, Dept. of Computer Science, G.U.

Dr. Abhijit Sarma Associate Professor,
Dept. of Computer Science, G.U.
Language Editor:

Dalim Chandm Das Asst. Professor, Dept. of English, GUIDOL

Format Editor:
Dipankar Saikia Editor, SLM, |DOL, Gauhati University

Cover Page Designing:
Bhaskar Jyoti Goswami IDOL, Gauhati University

November, 201 8
Re-Print : July, 2019

© Copyright by IDOL., Gauhati University. All nghts reserved. No pant
of this work may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, |
photocopying, or otherwise.Published on behalf of Institute of Distance |
and Open Learning, Gauhati University by the Director, GUIDOL and |
printed under the agis of Gauhati University Press, Guwahati-781014. |
Copies printed 500.

)

SYLLABUS
IT-02: Introduction to Programming

Unit 1: Introduction to C
Steps for problem solving, algorithm, analysis of algorithm efficiency, flowchar, pseudo
code, program, programming languages, translators.

Unit 2: History of C, Variables Constants, Expressions and Operatorsin C
History of C, features of C, structure of a C program, writing a C program, compiling
and runa C program, syntax and semantic emors, logical and runtime errors, execution
process.

Variables and Constants: Character set, identifiers and keywords, rules for forming
identifiers, data types and storage classes in C, variables, declaring vanables, mitializing
variables, constants, types of constants, Expressions and Operators: Assignment
stalements, unary and binary operators, arithmetic operators, relational operators,
logical operators, comma and conditional operators, type cast operator, size of
operator, precedence of operaiors.

Unit 3: Control Statements, Decision Control Statemenis

The If statement, the switch statement. Loop control statements: The while loop, the
do-while loop, the for loop, the nested loop, the goto statement, the break statement,
the continue statement.

Unit 4; Arrays and Strings

Arrays: Definition, syntax of amay declaration and initialization, subscript, processing
the arrays, multi-dimensional arrays, declaration and initialization of two-dimensional
arrays, processing of two-dimensional arrays, representation of matrix using two-
dimensional arrays.

Strings: Character amays, declaration and initialization of strings, array of strings. Library
string functions: strien, strepy, stmepy, stremp, stmemp, strempd, stmicmip, streat, stmcal,
striwr, strupr, strrev, strdup, strchr, strset, stmset, strstr.

Unit 5: Functions

Definition, structure of a function, function declaration, function definition, formal
parameter, actual parameter, the return statement, function prototypes, recursive
function. Function calling: Call by value, call by address.

3

Space for learners

nofes

Space for learners

nofes

=

Unit 6: Structures and Unions

Declaration and initialization of structures, accessing the members of a structure,
structures as function arguments, structures and arrays, unions, initializing an union,
accessing the member of an union.

Unit 7: Pointers

What is pointer, address and indirection operators, pointer type declaration and
assignment, pointer to a pointer, null pointer assignment, pointer arithmetic, passing
pointers to functions, arrays and pointers, arrays of pointers, pointers and-strings.

Unit 8: C Preprocessors and Command Line Arguments and Files

The C Preprocessor and Command Line Arguments: Definition, macros in C,
#define, #include, #ifdef, other preprocessor commands, predefined names defined
by preprocessor, command line arguments in C, structure of programs that use
command line arguments, accessing command line arguments.

Files: Definition, file handling in C using file pointers, fopen(), fclose(), input and
output using file pointers, character input and output in files, string input/output
functions, formatted input/output functions, block input/output functions, sequential
files, random access files, positioning the file pointer.

CONTENTS: | Space for learners

notes
UNIT 1: INTRODUCTION TO PROGRAMMING

10 Introduction
Ll Unit Objectives
12 Problem solving
13 Algorithms
131 Analysis of Algorithm Efficiency
14 Flowcharts
141 Basic Control Structure
1.5 Psewdocode
16 Program
1.7 Programming Languages
I8 Translators
1% Summing Up
.10 Key Terms
1.1l Answers lo Check Your Progress
112 Questions and Exercises

UNIT 2: HISTORY OF C, VARIABLES, CONSTANTS AND OPERATORS

INC
2l Introduction
22 Unit Objectives

23 History of C

24 Features of C

25 Structure of a C Program

26 Writing, Compiling and Executing & C Progrem

27 EmorsinC
28 C Character Set
29 C Tokens

29.1 Keywords
292 |dentifiers

293 Constanis, Operators and Special Characters
210 Dot Types

210, Prirmary/Buili-in Data type
2102 Derived Data Type
2103 User Defined Data Tyvpe
2104 Typedef

211 Variables & Storage Classes

212 Qutput and Input in C

213 Operators

Space for learners

nmofes

2131 Assignment Operator

2132 Arithmetic Operators

2133 Relational Operators

2134 Logical Operators

L1353 Increment and Decrement Uperators

21346 Conditional Operator

2137 Bitwise Operators

2138 Special Operators
114 Operator Precedence and Associativity
215 Summing Lip
216 Answers To Check Your Progress- |
217 Answers To Check Your Progress-2
218 Possible Questions
219 Further Readings

UNIT3} CONTROL STATEMENTS, DECISION
STATEMENTS
Introduction

Lk
L]

Ohjectives
33 Conditional Statement
331 The if staternent
331 The if else stntement
333 Multiple iTelse statement
334 Mested if else statement
335 The Switch statement
i4 Loop Control Statement
341 forloop
342 while loop
343 dowhile loop
3.5 Comparison of the loop staterments
3.6 Mested loop
3.7 poto statement
3.8 break statement
3.9 continue statement
310 exit) function
3l Summing Up
3.12 Answers to Check Your Progress
313 Possible Questions

CONTROL

314 Further Readings

UNIT 4: ARRAYS AND STRINGS
4.1 Introduction

Space for learners
nofes

42 Objectives
43 Definition of Array
44 Types of Array and Declaration
441 One Dimensional army
442 Muli-Dimensional amay
45 Operations on One Dimensional Array
451 Iniialization
452 Read and Access of Ammay Elements
453 Searching and Sorting
46 Operations on Two Dimensional Armay
46.1 Initializanion
452 Read and Access Array Elements
47 Definition of String
43 Input and Display a String
49 Operations on Sirings

410 Array of Strings

411 String Library Functions

412 Summing Up

413 Possible Questions

414 References and Suggested Readings

UNIT 5: FUNCTIONS

5l Introduction

52 Objectives

53 What is a Function?

54 Structure of a Function

55 Declaration of 2 Function

56 Function Definition: Formal Parameters & return Statement
57 Function Call: Actual Parameter

58 Call By Value

59 Call By Address

510 Types of User Defined Functions

11 Passing Array To Function

512 Passing String To Function

T

Space for learners
Roles

5.13
14
115

517

Recursive Function

Summing Lip

Answers to Check Your Progress
Possible Questions

Further Readings

UNIT 6: STRUCTURES AND UNIONS

6.1
62
63
64
6.5
1]
67
bl
69
6.10
611
6.12
6.13
&.14
6.13

Introduction

Obgectives

Defining a structure

Declaration and Initialization of Structures
Accessing the Members of a structure
Structures as Function Arguments
Structures and Arrays

Unions

Imitializing an Union

Accessing the Members of an Union
Check Your Progress

Answers To Check Your Progress
Summing Up

Further Reading

Mode! Question

UNIT 7: POINTER

T.]
72
T3
74

15
16

1.1

Introduction

Objectives

Definition of Pointer

Pointer to Armay

741 Pointerto One Dimensional Array
742 Pointer to Two Dimensional armays
743 Pointer to Strings

744 Array of Pointers

Pointer to Structure

Pointer and Function

76.1 Passing Memory Address to Function
762 Passing Aray to Function through Pointers

763 Passing Structure 1o Function through Pointers

Dynamic Memory Allocation

Space for learners

nofes

770 Dynamic Memory
7.72 Useof Library Function
78 Summing Up
79 Possible Questions
710 References and Suggested Readings

UNIT8: C PREPROCESSORS AND COMMAND LINE ARGUMENTS

AND FILES
B1 Introduction
82 Objectives

£3 C Preprocessor

B4 Macro Substitution Directives

85 File Inclusion Directives

86 Conditional Compilation Directives

87 Command Line Arguments

8 Files

&9 File Pointer

810 Opening and Closing Files

B11 imput and Cutput Operations with Files
£12 Writing and Reading a Data File
813 Unformatted Data Files

814 Binary Files

B.15 Summing Lp

£16 Key Terms

£17 Answers 10 Check Your Progress

EI8 Ouestions and Exercises
819 Further Reading

UNIT1 INTRODUCTIONTO
PROGRAMMING

CONTENTS

1.0 Introduction
1.1 Unit Objectives
1.2 Problemsolving
1.3 Algorithms
1.3.1 Analysis of Algorithm Efficiency
1.4 Flowcharts
1.4.1 Basic Control Structure
1.5 Pseudocode
1.6 Program
1.7 Programming Languages
1.8 Translators
1.9 Summing Up
.10 Key Terms
1.11 Answers to Check Your Progress
1.12 Questions and Exercises

1.0 INTRODUCTION

Computer is an electronic device which accepts inputs, processes them and
then finally produces the output. Computer consists of two main parts — hardware
and software. Hardware includes its tangible, physical devices and the set of instructions
required to manage the hardware and to accomplish different tasks of a computer is
called the software. Software is nothing but a set of programs. In other words, software
is also known as computer program. The person who performs the task of
programming is called a programmer and the process of developing a program is
called programming. With the help of a compuier many real world problems like
complex anithmetic equations, engineering calculations etc can be solved. In order to
solve a problem, it should be fed with the appropriate instructions to get the result. To
accomplish different tasks a programmer needs to write various programs, Before
writing a program, the programmer should understand what the problem is and how
it is to be solved. The programmer should have clear idea about the logic of the
program. For clear understanding one should know about the basic tools for developing
a program which includes algorithm, flowchant and pseudocodes. In this unit you will

|
| Space for learners

Space for learners
nes

find brief introduction to different programming kanguages, and leam how to develop
algorithms, flowcharts, preudocodes which will help a programmer to wrile programmes
in futute. Moreover you will leamn about the different translators required while writing
programs in different programming language.

1.1 OBJECTIVES
Affter oing through this unit student will able to:

Learn how to solve a problem

Understand what is an algorithm

Understand about the efficiency of the algorthm

Understand how to develop an algorithm

Understand what is a flowchart and how to draw it

Leam what is a pseudocode and how to write a pseudocode

Learn about programme and about different programming languages
Appreciate the importance of translators

& & & & & & & @

1.2 PROBLEM SOLVING

A computer is used to solve complex problems. The technique used to solve a problem
depends on the type of the problem to be solved and a single problem can be solved
in various ways depending upon the type of approach used by the programmer. Any

problem can generally be solved by following the steps given below:

» First we need to understand the problem

e Secondly we should plan a strategy to solve the problem

 Aferplanning the strategry we should try to find outall the possible altematives.

e OQutofall the possible alternatives we should try to find the optimal one and
finally implement the plan

e After implementation, the result should be verified for correctness.

1.3 ALGORITHM

An algorithm is a basic technique to solve a given problem in a finite number of steps.
The word algorithm derives from the name of the mathematician, Mohammed ibn-
Musa al-K hwarizmi, who was part of the royal court in Baghdad and who lived from
about 780 AD 1o 850 AD. Algorithm is quite helpful because as a beginner we may
not be able 1o find a solution to a problem ready. In fact, it gives us an idea as what
approach should be used for solving a particular program. Afier that we can use the
sarme approach while programming in a computer.

12

An algorithm must have the following properties: Soiie for lie
* Input: An algorithm can have zero or many number of mputs. notes
» Output: Analgonthm should definitely have anoutput.

» Finiteness: An algorithm must terminate alter a finite number of steps and
each step should take finite amount of time.

e Definiteness: The steps must be stated clearly and correctly, and there
should be no ambiguity.
+ Effectiveness: The steps of'an algorithm must be simple enough to carry
oul using just a penand a paper.
Let us go through some examples:
Example: Analgorithm to print the line “Welcome to IDOL”

Step]: Start
Step 2: Print “Welcome to [IDOL™
Step 3: End

Example: An algorithm for finding the sum of two numbers.

Step 1: Stant

sStep 2: Declare variables num|, num2 and sam.

Step 3: Read two values in two variables num| and numz2.

Step 4: Add num1 and num?2 and assign the result to sum.
sum = mum |+ num2

Step 5: Display sum

Step 6: Stop

Example: Analgorithm to find the largest among three different numbers

Step 1: Start
Step 2: Declare vanables a,band c.
Step 3: Read three values in the variablesa,band c.
Step 4: Ifa=b
Ifa>c
Display a is the largest number.
Else
Display ¢ is the largest number.

13

Else

Space _it;r:jmers [Fb>e
Display b is the largest number.
Else
Display c is the greatest number.
Step 5: Stop

Example: An algorithm to find the sum of first 50 numbers

Step 1: Start
Step 2: Declare variable n, sum
| Step 3: Initialize n=1, sum=0

Step 4: sum = sum-+n

Step 5:n=n+1

| Step 6: Repeat steps 4 and 5 until n>50
Step 7 Print sum

Step 8: Stop

Example: An algorithm to interchange the value of two numbers

Step 1: Start

Step 2: Read two values in two variables aand b
Step 3: Declare third variable ¢
Step4:c=a
a=b
b=c¢
Step 5: Printaand b

Step 6: Stop

STOP TO CONSIDER: Here a variable ¢ is created 1o just store temporarily
the values so that the content of the other two variables may get swapped

14

Example: An algorithm to find the area and perimeter of a square |
o . e o Space for learners

Step 1: Start i
Step 2: Read value for the variable length
Step 3: Declare variable area and perimeter
Step 4: area = length x length

Step 5: perimeter =4 x length

Step 6: Print area and perimeter

Step 7: Stop

Example: Analgorithm to find the square roots of a quadratic equation ax*+ bx + ¢ =0

Step | : Start
Step 2: Declare vaniablesa b, rl r2.d
Step 3: Read the coefficienis a,b.c -
Step 4: Calculate d = b’ - 4ac
Step 5: [fd <0, print “roots are imaginary™ and go to step 7
Else
rl=(-b+sgn(d)/2xa
r2=(-b+sqri(d)/2xa
Step 6: Print rootsrl& 12
Step 7: End

Example: An algorithm to convert temperature from Fahrenheith to Celcius

Step 1: Start

Step 2: Declare variables F and C
Step 3: Read variable F

Step 4: Compute C = 5/9 x (F-32)
Step 5: Print C

Step 6: End

15

STOP TO CONSIDER: Here in step 4 we have used the defined formula of

Space f,:::mzﬂ converting Fahrenheit to Celsius

Example: An algorithm to find the product of n numbers

Step 1: Stan
Step2: Read n
Step 3: Declare variables product, n, count.

Step 4: Initialize count=0, product=1,
Step §: count = count+1

Step 6: product = count x product

Step 7: Repeat steps 4 & 5 until count>n
Step 8: Print product

Step 9: End

Example: An algorithm to find the factorial of a number.

Step 1: Start

Step 2: Declare variables n, fact, i

Step 3: Read the value of n

Step 4: Initialize fact=1, =1

Step 5: Repeat steps 6 & 7 until i<=number
Else go 1o step 9

Step 6: fact = fact x i

Step 7: i=i+]

Step 8: Print fact

Step 9: End

1.3.1 Analysis of Algorithm Efficiency

As we know that a problem can be solved ina number of ways using algorithms, the
important thing is not just getting a solution to a problem but how to solve the problem
efficiently. The efficiency of an algorithm depends upon a number of factors like speed
of the processor, programming language, compiler as well as also the size of the imput.

Apart from these factors, how the data is being organized and also which algorithm to
choose in solving a particular problem has a huge impact on the efficiency of the
program. For this before solving a problem we should study the behavior of the
algorithm so that the correct algorithm is used to solve a particular problem. The
efficiency of an algorithm determines how effectively it uses its resources. By resources
it means time and space. Time refers 10 the time required by the algorithm to execute
each step and space refers to the amount of memory utilized while executing the
algorithm. Lesser the use of resources in algorithm, greater is its efficiency.

Time efficiency and space efficiency are also referred to as time complexity and space
complexity respectively. In space efficiency the amount of memory used is analyzed
whereas in time efficiency the running time of the algorithm is analyzed.

Space Efficiency: Space efficiency depends upon a number of components such as
instruction space, data space and nuntime stack space.

Time Efficiency: The running time of an algorithm depends upon factors like the
type of compiler, speed of the computer, amount of data and the actual data. While
computing time efficiency of an algorithm three cases are being considered:

- Worstcase
- Average Casc
- Bestcase

Worst case: Suppose we are given a list of numbers and we need to find a particular
number in that list using a particular algorithm. The worst case occurs if the number
present in the list is in the last position or if it is not in that list. This case results in
maximum number of operations as we need to traverse each and every element one
by one. So it takes a lot of time and hence slow.

Average case: Considering the same example of the worst case, let us assume that
the number of given clements is 20, While finding fora particular element in the list we
got it in the 10* position then we can just say that the algorithm took average time.

Best case: If while scarching for a particular element in the list, we got itin the first
position itself then the algorithm is considered to be in the best case. Less number of
operation in less amount of time.

STOP TO CONSIDER:
The analysis of algorithm is a very large topic that is covered ina different
subject which is beyond the scope of this course. The above explanation i just
as an introduction.

~ CHECK YOUR PROGRESS :
1. What is an algorithm?
2, Write an algorithm to find whether a number is odd or even.

Space for learners
noles

7

Space for learners

1.4 FLOWCHART

Flowchart is a diagrammatic representation of an algorithm. There may be different
kinds of flowcharts but in case of programming, program flowcharts are used. Flowchart
represents the flow of data within the control of the program. Flowcharts are sometimes
also termed as Process Flowchart, Process Map and Functional Flowchart, It helps
us in understanding the programming approach to solve a problem. [t is the step next
o algorithm to elucidate the concept of programming. Flowcharts can be easily drawn
with a pen and a paper. Flowcharts can also be drawn using different computer software.
Although there are different types of flowchart, we will be discussing only the program
flowchart as it is relevant to this course. Program flowchart is used for developing the
structure of a program that shows the logical flow and the operations performed. A
making conditions, looping and branching sequences and Various outputs.

HISTORY

Frank Gilbreth explained the first flow chart 1o the members of ASME in 1921 to
introduce his presentation “Process Charts - First Steps in Finding the One Best
Way™. It soon made inio the field of industrial engineering. During the early 1930s,
Allan H. Mogensen (industrial engineer) trained business people 1o use some of the
industrial engineering tools at the Work Simplification Conference in New York, A
graduate, Art Spinanger, developed their Deliberate Methods Change Program.
Another graduate, Ben S. Graham, used flowcharting to process information with the
use of multi-flow process chart to exhibit many documents and their connection with
others. In this way flowcharts were used first by engineers for designing different
components. Because it was easy to develop and maintain a flowchart, it came into
use in many fields. It became a very important tool in the field of computer science as
it is the basic tool for developing programs.

Advantages of flowchart:

* ltdepicts the sequence of a program. [t can be broken down further for study
and analysis.

* Itiseasier to explain the logic of a program to a beginner using a flowchart.

* Flowchart does not follow any programming syntax, so anyone can develop
it.

® Flowchart can be developed in parts. This concept can be used while
developing software, as many programmers are involved, each one can develop
his/her flowchart of the module assigned.

¢ Developing a flowchart before writing a program results in error-free program
and takes less amount of time.

Disadvantages of flowchart:
* ltisdifficult to solve a complex problem using flowchart as the process becomes
cumbersome and the user has 1o spend a lot of time developing it.

s Ifmodifications are required the user has o erase the carlier flowchart and do
o
Some standard symbols are used while designing a flowchart. Flowchar symbols

have been standardized by the American Standard Institute. The symbols along with
the terms are given below:

Start or End of the program symbol. This symbol is
used in the beginning of the lowchart to indicate the
start of the program.

Input/Output symbol: This symbol is used to read
the values of the inputs or variables that are required
to perform a particular task. The same symbol is
used also for output which gives the final result after
carrying out all the operations.

Process symbol: This symbol is used to carry out
the operations after which the final result is given.

Decision making and branching symbol: This symbal

is used to decide which path to follow based ona

certain condition. For example, if the condition is
———

true then path1 is selected and if not, path2.

This symbol is used for joining two paris of a
flowchart when it has a large and complex structure
this symbol is rarely used generally.

Connector or Flow line: This symbeol is used 1o
connect the symbols to show the flow of the

—
program.
The rules to be followed for drawing flowcharts:

1. Flow lines are used to connect all the symbols of the flowchart.

2. Flow lines enter the top of the symbol and exit out at the bottom, except for
the Decision symbol, which can have flow lines exiting from the bottom or the
sides.

3. The flow of a program in a flowchart is always from top to botiom and never
bottom o top.

4. Flowchart should always begin with the start symbol and end with the end
symbol. In both the cases same symbol is used.

1.4.1 Basic Control Structure

There are some standard ways of connecting the symbols in flowcharts. This forms
the three basic control structures. Fach of the three basic structures has a single entry
flow and a single exit flow.

19

Space for learners
noles

Spiu for learners
noles

2) Sequence- [n sequence control structure the steps are executed one after another
and are represented by symbols that follow each other top to bottom or left to right.
* Top to bottom is the standard.

Instruction 1

l

lnﬂnlctiunl

Suppose we are required to read a value and to initialize that value. These two
statements should follow one another sequentially. In such a situation, we use sequence
control structure.

Read n

Initialize n=1

!

b) Selection- In selection control structure, a condition is evahiated and depending
upon whether the condition is true or false, the control may follow a certain path.

l

Check

False

True

Instruction 1

0

For example we have to find whether the given number is odd or even. There may be
two possible cases: True or False. Ifit is true then path] should be selected and if not,

path2.
l Path
False l
/ PRINT nis /
odd
True Pathl
/ PRINT nis
Even

STOP TO CONSIDER: In the above example, % operator is used. %
operator returns the remainder.

¢) Repetition- In repetition control structure, a group of statements are executed

repeatedly until it keeps on satisfying a given condition.

11

Space for learners

noies

Space for learners |

noles

statement following the decision symbol is repeatedly executed.

| Forexample, we need to execute a particular statement until a number is less than or
equal 1o 50. Until the condition is true the same statement is repealed, after which

n<=50

YES

] -

L

structures.
Example: Flowchart to print “Welcome to IDOL”

[START ?
PRINT
“Welcome to IDOL"

)

not required.

12

Now we will go through cenain examples of flowchart having different control

This is a simple example to print the given line. Here no variables are used as they are

Example: Flowchart to find the sum of two numbers.
Space for learners
nofes
START

7

sum= nl+ nl

Here nl and n2 are two variables where the two numbers to be added will be stored.
The final result is stored in the variable sum.

13

Example: Flowchart to find the largest of three numbers
Space for learners

nmofes {'

START]

Tr
True -

Here a,b and c are the three varibles where the three numbers to be compared are
stored. Three decision symbols are used for three comparisons. According to the
outcome of the comparison, the control follow one of the all possible paths.

Example: Draw a flowchart to find the area of a rectangle

(o
r=—

Space for learners
noies

area= Ixb

r

s
)

Here | and b are two variables for reading the value of length and breadth respectively.
The third variable area is used to store the area of the rectangle which is nothing but
the product of length and breadith.

25

B Example: Draw a flowchart to print the bers from 1 to 10
Space for learners d g e

- ™]

Initialize n =0

Incrementn by 1

S

True

False

[-]

Here nis a variable that is first initialized as 0. The value of n is then incremented byl
and after this the value of n is printed. According to the question the values | 1o 10
need to be printed; so a loop is being used to check whether the value of n is less than

or eqgual to n. The program prints n till it keeps on satisfying the given condition.

b

Example: Draw a flowchart to find the square roots of the quadratic cquati

weeracdi —
Vil 4

d=sqgrtfbxb-4xaxc)

L 4

ri=(-b+d)/2xa

1

r2=(bd)/2xa

k

[7

w=n

Here the variables a, b and ¢ are used for storing the coefficients of the given equation.
As we know the roots of a quadratic equation is given by

o b+vb* - 4dac
2a

The b’ —4ac part is assigned in the variable d. Thus the two roots of the equation
are

27

Space for learners

Space for learners
mores

rl=-{-b+d)}2 xa
2=(-b-d)y/2xa

Example: Draw a flowchart to calculate temperature from Fahrenheit to Celsius

Bl

Here the variable F is used io read the temperature given in Fahrenheit. The variable

C is used to convert the temperature from Fahrenheit to Celsius using the defined
formula,

18

E_ﬁ:DMaMhmmnﬂumfmm

=]
¥ A4

c=a

11

e
(=

Here a and b are two variables used to store the values that are to be interchanged or
swapped. The variable ¢ is used to temporarily store the value of a, so that the value
of bcan be assigned to a, and the value of c- which is nothing but the value ofa - is

assigned to b.

1%

Space for learners

Space for learners
noles

Example: Draw a flowchart to find the factorial of a number.

)
r Al 2

F=1, i=1

F=Fxl

izi+1

7
=)

o

Here n is used 1o store the number whose factorial is to be found out. The variable
E is intialized as | and is used 10 store the factorial of the nurnber The variableiiis | Spacefor fearners
used to increment the count of the number. The decision symbol is used to check neca
whether the variable i after every increment becomes the number itself or not. Till the
condition is met the control remains in a Joop. When the value of i equals the value of
n the control exits the loop and finally prints the result.

Self Assessment Question
e Drawa flowchart to find the average of five numbers.
e Drawa flowchart to find whether a number is positive or negative.

1.5 PSEUDOCODE

Pseudocode is an informal way of describing the operating principle of a program
without any strict programming syntax or nules. It helps the programmer in developing
algorithms. It is usually written before writing the final program and is in a form that
can be easily and quickly converted into a program. As no prior technical knowledge
of programming is required, anyone can write a pseudocode with very little effort. It
uses short terms of the English alphabets and has input step for data, mathematical
expression for manipulation and output steps for getting the final result
Advantage

¢ Easy towrite and understand.

s Canbe easily modified.

e Canbe casily converted to a programming language.
Disadvaniage

« Doesn’t have a proper structure, so the programmer may not
understand the logic of the program.
« Flowcharts are Much more convenient than pseudocode to develop
programs.
Let us go through some examples:

Example: Pseudocode to find the product of two numbers

Start

Readnl, n2

Compute productasnlxn2
Write product

End

i

Example: Pseudocode to find the area of a circle

Space for learners
notes
Start
Read radius
Compute area as 3.14 x radius x radius
Write area
End

Example: Pseundocode to find the perimeter of a rectangle

Start

Read length, breadth

Compute perimeter as 2x(length + breadth)
‘Write perimeter

End

Example: Pseudocode to print all multiples of 3 between 1 and 100

Start

Setnto |
While(n<=33)
Computen=nx3
Write n

end While

Example: Pseudocode to find the sum of first 10 natural numbers

Start

Setnto | and sum=10
While(n<=10)
Compute surm=sum +n
Compute n=n+1
endWhile

Write sum

n

Example: Pseudocode to display numbers 1 to 100

Space for learners
noles
Start
Fori=1to 100
Writei
end For

STOP TO CONSIDER: In the last three examples we have used loop
statements while and for. We use them when a statement ora group of statements
need to be executed repeatedly until a given condition is satisfied

Self Assessment Questions
e Write the pseudocode for finding the average of five numbers
* Write the pseudocode for finding all the multiples of 2 between 1 and 30

1.6 PROGRAM

A program is an ordered set of instructions given to a computer to perform a particular
task. The person who writes a program is called a programmer and the program is
written in a programming language. In order to get the results as desired by the
programmer, it should be properly written with correct logic statements. The
characteristics of a good program are:

¢ User friendly: It should be written in such a way that any reader can easily
understand the logic of the program.

= Portable: It should be platform independent so that a program written in one
machine can be easily shifted to another machine.

s Efficiency: ltshould use its resources efficiently. It should be fast to produce
the output with the memory assigned to it in limited time.

* Reliable: It should be reliable enough to handle any type of error and should
be able to display error message or waming,

e Documentation: It should use proper names for the variables and constants
used in the program. [t should have comment section wherever necessary so
that one can understand the functionality of the program easily. It is one of the
most important component of a program.

1.7 PROGRAMMING LANGUAGES

A programming language isa formal language which is comprised of a set of vocabulary - |-

and rules 1o instruct a computer to accomplish a certain task Just as we human beings

need a language 10 communicate, computers too require a language through which
i :

Space for learners
nofes

they can communicate with the programmer so that it might solve the task assigned to
it. As computer hardware have developed a lot from the 1* generation computers, in
due course of time, computer languages, too, have come off a long way right from
machine oriented language (that used strings of only 0 and 1) to problem oriented
language. Programming language can broadly be classified into three categories:

1. Machine Language (First Generation Language)
2. Assembly Language (Second Generation Language)
3. High Level Language (Third Generation Language)

1. Machine Language: A computer understands only binary language which consists
of two numbers viz. 0 and 1. The programming language that uses a sequence of 0
and | for writing instructions are known as machine language. Machine language was
the first generation language, An instruction consists of two parts: op-code and operand.
Op-code is the operation to be performed and operand is the address of the data
where the op-code is to be applied. In case of machine language both op-code and
operand will consist of a string of zero and one. An example of machine language 15

represented below

OP Code Operand
001 010001110

One can easily imagine how tough it would be 1o write a program in machine language.
One has to remember the op-code for each operation and also has to keep a list of
addresses of the data to be operated on. This is simply cumbersome, time consuming
and error-prone. Moreover the number of operands depends on the computer, so a
program written for one computer is not applicable 1o another computer. Also cormecting
errors in such type of program is a mammoth task.

2. Assembly Language: Assembly language is the second generation language which
is an upgrade of first generation language. Instructions written in assembly language
used symbolic codes called mnemanics for the operation code and a string of characters
for the operand. An example of assembly language program is represented below:

Operation Operation address
READ M
ADD #

Programs written in assembly language is converted to machine codes by a special
program called assembler. Assembly language is comparatively easier to remember
than machine language but not at all convenient as it is machine dependent. The codes
written for one computer cannot be implemented in another.

3. High Level Language: The third generation language is the high level language.
Due to lack of portability in earlier languages, high level languages were developed o
relieve the programmer of the low level details of the hardware part. High level language
uses English phrases which are easier to leam and understand. A program written in
high level language is machine independent and hence a program writlen in one
computer can be easily shified to another without or with little modification. Programs
written in high level language is converted to machine language by a program known
as compiler or interpreter. The features like portability, user friendliness, relative ease
of maintenance have made high level languages very popular and convenient for
performing any task. Examples of high level language are- FORTRAN, COBOL,
BASIC, PASCAL,C,C++ JAVAetc.

In this course we are going to learn the C language and after completion of this course
you will be easily able to write a program in C.

STOP TO CONSIDER:
First generation, second generation and third generation language is also called
1GL 2GL and 3GL respectively. Besides this, there is also fourth generation
(4GL) and fifth gencration language(SGL)

CHECK YOUR PROGRESS
3. What is a programming language?
4. Give two examples of high level language.
5. What is the difference between compiler and assembler 7

1.8 TRANSLATORS

Computer understands only binary language. So a program written in high level
language needs to be converted into machine codes for its execution. A translator isa
term that is used in programming to refer to a compiler, interpreter, assembler or
anything that converts a high level language to another equivalent high level language
orto a low level language. It isa programming processor that helps a programmer to
convert the program written in any high level language called the source code to low
level language called the object code without losing the semantics of the original code.
There are various type of translators depending upon the functions performed by
them.

Space for learners
notes

Space for learners
notes

1. Compiler: Acompiler translates a program written in high level language into
machine language. The compiler takes the whole program at a time and
produces the equivalent machine codes. If errors are present in the program
the programmers need to check the source code to comrect it. [t is recompiled
to gei the final executable file. Once it gets compiled you can execute the
program any number of times without a compiler.

2. Interpreter: An interpreter also translates a program written in high level
language into machine language but it executes one statement at a time and is
therefore, slower than a compiler. As the interpreter checks a program line by
line, it stops whenever an error is encountered. Here no executable file is
produced. So a program needs to be interpreted every time it needs to be
executed.

3. Assembler: An assembler is used 1o translate a program written in assembly
language program to machine language. Similar to a compiler, an assembler
produces an executable file and hence a program once assembled need not
be re-assembled.

1.9 SUMMINGUP

In this unit you have learned about problem solving and different approaches used in
problem solving. You learned about algorithm which is a step by step procedure to
solve a problem, and also about the efficiency of an algorithm which depends upon
the two factors: time and space. Similarly, you have gained an understanding of
flowchart which is a diagrammatic representation of an algorithm, and how it makes
use of some symbols to represent the flow of data in a problem. There are three basic
structures of a flowchart: sequence, selection and repetition. After this you have leamed
about pseudocode. Pseudocode is an informal language which helps the programmer
in developing an algorithm. You have also leamed the definition of a program and its
chamcteristics. You have also leamed about the requirement of a programming language
and its different types. Lastly you have come to know that to convert a high level
language into low level language we need translators. There are different types of
translators such as compiler, interpreter and assembiler.

1.10 KEY TERMS

» Algorithm: An algorithm is a basic technique to solve a given problemina
finite number of steps,
"« Flowchart: Flowchart is a diagrammatic representation of an algorithm
* Psendocode: Pseudocode is an informal way of describing the operating
principle of a program without any strict programming syntax or rubes
* Program: A program is a set of instructions given to a computer to perform a
particular task. -

3

s Translator A translator is a term that is used in programming to refer acompiler,
interpreter, assembler or anything that converts a high level language to another
equivalent high level language or to alow level language.

1.11 ANSWERS TO CHECK YOUR PROGRESS

1. An algorithm is a basic technique to solve a given problem ina finite number of
steps.
2. Algorithm to find whether a number is odd or even
Step 1: Start
Step 2: Declare variable n
Step 3: Read a value in variable n
Step 4: [fndivisible by 2

Go to step 5,else step 6
Step 5: Print “Even™ and stop
Step 6: Print “Odd™ and stop
3. A programming language is a formal language which comprises a set of vocabulary
and rules io instruct a computer to accomplish a certain task. Just as we human beings
need a language to communicate, computers too require a language through which
they can communicate with the programmer so that it might solve the task assigned to
i
4. Two examples of high level language: C and C++
5. A compiler translates a program written in high level language to low level language
whereas an assembler translates a program written in assembly language to low level
language.

1.12 QUESTIONSAND EXERCISES

Multiple Choice Questions

1) The technique to solve a given problem in & finite number of steps is called:
a)Flowchart b) Pseudocode

c)Algorithm d) None of the above

2) The efficiency of an algorithm depends upon two factors:

a) Time and space b) Tirme and money
¢) Space and symbols d) Space and technique
J)Cisalan

a)High level language b} Low level language
3

Space for learners

nofes

—

Space for learners
notes

¢) Assembly language d) Machine language

4) The characteristics of a good program are;
a) User friendly b) Reliable
¢) Portable d) All of the above

5) An example of translator is:
a) Compiler b) Debugger
c) Text editor d) Operating system

Answers: 1(c), 2(a), 3.(a),4.(d).5.(a)

State True or False:

1) Inselection control structure, a condition is evaluated and depending upon whether
the condition is true or false, the control may follow a certain path.

2) The flow of a program in a flowchart is always from botiom to top.

3) Theefficiency of an algorithm determines how effectively it uses its resources,
4) Analgorithm can have infinite number of steps.

3) Assembler is not a translator.

Answers: |)True, 2)False,3)True, 4) False 5) False

Fill in ihe blanks:

1) _isan informal way of describing the operating principle of a
program without any strict programming syntax or rules.

2) Aprogramisasetof ___ giventoacomputer to perform a particular
lask.

3) is the second gencration language.

4) An executes one siatement at a time and hence slower thana
compiler.

5) 15 one of the important components of a program,

Answers: 1) Pseudocode,2) Instructions,3) Assembly language, 4) Interpreter,
5} Documentation

Match the columns:
: — . - Space for learners

1) Java a) Translator moles
2) First Generation Language b) Diagrammatic representation of an

algonithm
3) Reliable ¢) Debugger
4) Flowchart d) Assembly Language
5) Interpreter ¢) Diagrammatic representation of a

pscudocode

f .hb'ilil}' to handle any type of error and
should be able to display error message
or waming

g) High level language

h) Machine Language

Answers: 1) (2),2) () 3) () 4) (b), 5) (a)

Long Answer Questions
1) What is problem solving?
2) What isan algorithm? State the properties of an algorithm.
3) Write a briefhistory about flowchart.
3) Whatisa flowchart? List the rules of drawing a flowcharnt?
4) Explainthe basic control structure of flowchart with the help of diagrams.
5) Wha is a pseudocode? List two advantages and disadvantages of pseudocode.
6) Whatisaprogram? What are the characteristics of a good program?
7) Why do we need a programming language?
8) Explain the different types of programming languages.
9) What is a translator? Explain the different types of translator.
10) Write algorithm and draw flowchart
To find the sum of digits of a number
To find the factorial of a number
To find whether a number is prime or not
11) Write pseudocode
To find the largest of three numbers
To find the Simple Interest

3

Space for learners

nores

Suggested Reading List

1} The Art of Programming Through Flowcharts & Algorithms By Anil Bikas
Chaudhuri Laxmi Publications (December 30, 2005)

2) https:/nptel.ac.in/courses/106105171/1

UNIT2 HISTORY OF C, VARIABLES,

CONSTANTS AND OPERATORS
INC

CONTENTS .

2.1
22
23
2.4
2.5
2.6
27
28
29

Introduction

Unit Objectives

History of C

Features of C

Structure of a C Program

Writing, Compiling and Executing a C Program
Ermmorsin C

C Character Sct

C Tokens

29.1 Keywords

2.9.2 Identifiers

2.9.3 Constants, Operators and Special Characters

2.10 Data Types

2.10.1 Primary/Built-in Data type
2.10.2 Derived Data Type
2.10.3 User Defined Data Type

2.10.4 Typedef

2.11 Variables & Stornge Classes
2.12 Output and Input in C

2.13 Operators

2.13.1 Assignment Operator
2.13.2 Arithmetic Operators

2.13.3 Relational Operators

2.13.4 Logical Operators

2.13.5 Increment and Decrement Operators
2.13.6 Conditional Operator

2.13.7 Bitwise Operutors

2.13.8 Special Operators

2.14 Operator Precedence and Associativity
2.15 Summing Up

41

Space for learners
Rotes

P k‘__.m__l 2.16 Answers To Check Your Progress-1
Space for i | 2.17 Answers To Check Your Progress-2
2.18 Possible Questions

2.19 Further Readings

2.1 INTRODUCTION

Like natural languages, C language also has sets of alphabets, symbols (also operators),
library words eic, Also it has specifications for wnting language statements, mathernatical
expressions, formulas etc. The C language is casc-sensitive. This means that
e ifaterm is defined in C library in upper-case then if we use the term in our
program only in uppercase, and
* if wedefine a term inupper-case in a program then the further use of the term
should be in upper-case throughout the same program.

2.2 OBJECTIVES

. After going through this unit, you will be able to:
. » pelacquainted with the history of C language and its features.
s understand the structure of a C program.

* know how to write, compile and execute a C program in Windows and Linux

operating system.

o leam the different types of errors generally occur while compiling and running
a C program.

» understand the different types of tokens in C in detail, e.g., keywords,
identifiers, constantsefc.

* know about data types and its categories in detail.
» leamabout variable concept and basic input/output functions with syntaxes in
L.

¢ have idea about different operators and their use. You will also be able to
understand what does operator precedence and associativity mean.

2.3 HISTORYOFC

C is a general-purpose language which was developed for the UNIX Operating
System. C was developed in the early 1970s by Dennis M. Ritchie who was an
employee from AT&T(Bell Labs).

Ritchie with Ken Thompson and others was initially involved in a project called
Multics in 1960 at AT&T. Development of an Operating System for large Computers

a2

that can be used by hundreds/thousands of users was the main goal of Multics. But
the project Multics could not be able to produce useful system. So, in 1969 the
project was withdrawn by AT&T.

Thompson and Ritchie began to work on the development of a new file system for
DEC PDP-7. With the knowledge from the Multics project, they were able to make
improvements and expansions. At last it took a complete form and Brian W. Kemighan
termed the system as UNIX. Side-by-side, Ken Thompson was working on the
development of a programming language called B (derived from Martin Richards
BCPL). UNIX was enabled with an interpreter for the language B. Afier the
development of B, it was used for further development of UNLX.

In B, as most were expressed in machine codes (not easy to work-with) and the
other drawbacks created various lags. These lags forced Ritchie to develop the
programming language C, keeping most of the language B syntax. Thus C became a
powerful mix of high-level functionality. Later-on, most of the UNIX components
were rewriiten in C.

The American National Standards Institute (ANSI) established a committee in
the vear 1983 which provides the definition, the ANSI standard, or “ANSI C” (in late
198R),

2.4 FEATUREOFC

C Language is simple in terms of syntae and variety of decent functionalities. Following
are the important features of C language.
e Robust language with a very rich set of operators and library functions. C has
provisions for creation of programmers’ own library of functions.

s Duetoits variety in data-types and also rich set of powerful in-built functions,
the programs written in it are fast and efficient.

e [tishighly portable as because programs written in it can be run on different
machines with a little or no modification.

e Itis known as middle-level language as its compiler has the capabilities of a
low-level language (i .e. assembly language) along with the features of'a high-
level language. This is the reason that C language is well suited for writing
both System Software and Application Software.

« Extendibility is one of the major features of C language i.e. is has the ability to
extend itself.

2.5 STRUCTURE OFACPROGRAM

The structure of C program with its programming elements is shown below:

Space for learners
nofes

Space for learners
nofes

Pre-processor directive
(e.g., Header File inclusion)
(ilobal Variable(s)
User-defined Functions Declarations

s

=

main{) Function
User-defined Functions Definitions

A simple C program that prints * Hello World' on the monitor(output screen) is shown
below.
Hinclude<sidio h>
wvioid main{)
{
printfi*“Hello World!™);
}

Now, let’s try to understand the above program as per the structure mentioned above.
First line is the Pre-processor Directives. We know that natural languages like
Assamese, English etc. have their own dictionary/library. Thus C also has its library
and it consists of some pre-written files, known as header files. In a C program, we
can include header files as per the requirements of the program. Here, in this program,
the header file, namely ‘stdio.h’ is included as it the basic header file that needs to be
included for a simple C program.

STOP TO CONSIDER
The extension of a header file in C is * . The header file, stdio.h, contains the
basic input/output functions and other items those are important for a simple C
progrum.

There is no line for Global Variable(s) Declaration.

There is no line for User-defined Functions Declaration.

The remaining lines are under main() Function. The lines inside the brackets {and }
are under the main(). Function will be discussed in the Sections/Units to follow. But,

for now take the function as a block of lines (also known as statements in programming).
So, the main() function (block set by { and } brackets) contains the statement,

pantf{“Hello World!™);

which will display the message, Hello World!, on to the computer screen/monitor.
The main() function is necessary for each and every C program as when we execule
a C program, the execution starts from main{). The necessity of the use of ‘void” will
be understood in the following sectiong/units.

44

Also, there is no line for User-defined Functions Definition.

Each and every line in the above program is called a Statement. As in English language :

a sentence is marked end with full-stop(.), a C statement ends with a semicolon(;)
except the few ¢.g., the above mentioned Pre-processor Directives (statements).

2.6 WRITING COMPILINGAND EXECUTINGAC
PROGRAM

From writing a C program to its execution, various softwares are required. These are
namely: a Text Editor for editing; a Compiler for compiling; 2 Debugger for
debugging; a Linker for linking.

Linker

Source Code ——— Object Code ——"> Machine Code
Compiler Linker

Thus, each of the softwares is to be installed in your machine separately for this
purpose. There are software packages available bundled with all the above mentioned
system softwares with additional functionalities. Thus these softwares enable a user/
programmer to write, compile, debug and execute (run) a C program. This kind of
packages is generally termed as Integrated Development Environment (IDE).
Not only for C language, there are IDEs available for other Computer Languages
also. For C language an example of IDE is Turbo-C.

For a C program to execute, the file (saved with the extension .¢ or .C) containing
statements written in C has to be translated from a high-level language 1o a low-level
language (executable code). This task is accomplished with the help of compiler and
linker, A compiler takes in a source code and produces an object code which is
further passed to a linker. A linker links the source program with the external entities
such as the header files and other user-defined files, if any, to produce the final
executable code.

For Windows users, the procedure for writing and executing a C program in Tarbo-
C is shown below.

1. Open the Turbo-C IDE.

Double-click the [ff§ icon. It can be found in C:YTC\bin folder. Once Turbo-C
opens up, one should be able 1o see the environment like below.

45

-Space for learners
notes

Space for learners
nofes

2. Select “New’ from the *File' menu.

Write the program and save it in a location of your choice. The default location
where a program is saved is ‘CATCibin’. To save a program, press F2 or select
‘Save’ from the ‘File’ menu. The extension of the file must be .c or .C foraC
rOZram.

3. Tocompile select ‘Compile’ from the *Compile’ menu. (or press Alt+F9)

s il malnly

priscfd
o ha BT Mg

If there are some errors in the program, the error messages will be displayed in
the ‘Message” box. Shown below is an example where a semi-colon is missing at
the ¢nd of the statement. Such compile-time errors need to be corrected for a
successful compilation.

s |d aslatl)
+

4. After a program is compiled, it can be executed. To do so, select ‘run’ from the '
i Space for learners |

nofes
The output of the program will be displayed on the screen. For our example,

‘Hello World" will be displayed.

-7+

For limsx/unix users, the process for compiling and execution is shown below:

1. Openatexteditor (via a terminal). For demonstration, gedit text editor is used.
The user is however free to choose any text editor.

Ee Ea Yes Jemwad Talm feip J

EH[L}#[,. albagt 15 gadlt e .4
|

I3

2. Write the program and save it.

TR . IR TR e
B e e e o e

(¥] % # e g I < TR |
- - — &Y [- e

3. Compile the program by a compiler. Common compilers available in a unix
environment are ce, gee ete. To compile a program, type in the terminal

<Compiler name> <Program_name> [~0 <Ouiput_file_name=>]

47

Space for learners
nofes

For example,

©C myprog.c —0 myprog

Thus according to syniax ‘ce” is the compiler name, “myprog.¢’ is the program
file name and ‘myprog’ is the output file name. ‘-0’ is used to tell the compiler
that the output file to be produced should be “myprog’.

"h
=
I=

e b e [ves Tolr Hely
jenpidaliarelanst - |1 o syjpreg.. \l'rn'rﬂ

|

If the program has some compile-time errors, eror messages will be displayed
bearing the line numbers; as in the example below- line numbered 6 has a syntax
ervor.

“J"]
Ble B Mem Jerwed e Hﬂ?

Il-rllu palbdal - B £C I‘.'Hlﬂ .:‘

WrPIrEs I8 feviies waln’

W upah il srwer. sylids srver Befere (" ke

T e T L R

4. After successful compilation, the program can be executed.

| ST tEe—— T I TGO
fle Gor woem [fewmi Talp e

|wazidalliasdlbusl 18 , wvffup =
Balls Narld)

(maz i dedincainnst o 10]

STOP TOCONSIDER

In the syntax for compilation the items appearing inside [| are optional. So, if
no name for the output file is provided, the default output file produced after
compilation is ‘a.out’.

2.7 ERRORSINC

There are various types of errors those may occur during compilation and execution
of a C program. These are:

Syntax Error
Such error occurs when a statement does not comply by the rules of the language.
Those errors are detected by the compiler and need to be corrected before the
code is executed. So, this kind of errors is also known as a compile-time error.
Some common compile-time errors are statement missing semi-colon(s), mis-
spelt keywords, undefined identifier etc. The example below has a statement
Example-1:
#include<stdio h>
void main()
i

intab //semi-colon(;) missing

a=2,

b=3 fisemi-colon(;) missing

printf{“Sum=%d", a+b);

Compilation Output: Declaration syntax error, statement missing semi-colon
Semantic Error
These errors violate the meaning or the logic of the language and hence fail to

produce the desired result. These errors are also detected by the compiler most
of the time. Consider the following statements of C program.

inta=2, b=4,c;

a+b=c¢;

Compilation Output: Lvalue required

Run-time Error

Even afier successful compilation, there are times when a program fails 1o execute
properly. Some situations which may generate run-time errors are:

- when a number is divided by zero,

- while trying to open a file that does not exist,

- accessing a list of elements beyond its boundary etc.

Consider the following statements,

b=xy;

c=alb;

Consider symbols —and / mean subtraction and division respectively. Now, the
above stateriients are correct. But if it happens that for the first statcment the

value of b becomes 0, Then in the second statement a will be divided by 0, 2/0 -

which is an invalid operation and will lead to termination of the program execution.

40

Space for learners
notes

Space for learners | 2.8 CCHARACTERSET
notes
C Character Sei
Letters: Digits:
Lower Case: a.....z 0.1,....9
UpperCase: A....Z
Symbols:
[, Comma } Right brace
. Period [Left bracket
; Semicolon] Right bracket
: Colon < Opening angle bracket/
7 Question mark or less than sign
* Apostrophe > Closing angle bracket/ or
“Quotation mark greater than sign
! Exclamation / Slash |
Hash \ Backslash
$ Dollarsign | Vertical bar
A Caret = Equal sign
& Ampersand - Minus sign
* Asterisk _ Underscore .
(Lefi parenthesis + Plus sign
) Right parenthesis - Tilde
{ Lefi brace .
White Spaces:
Blanks Mew Line
Horizontal Tab Carriage Return
| Vertical Tab _ Form Feed
Table-2.1: C Character Set
A character denotes an alphabet, digit or special symbol used to represent information.
Like natural languages, computer language will also have well defined character set,
which is useful to build the programs.
The C Character Set includes alphabets: a to z (lower case), A to Z (upper case), digits:
0109, special symbols: |, @, #, $, % and many more. It also includes white spaces such
as blank, tab, new line, form feed etc. Tabde-2. 1 list the C Character Set.
The C language follows the American Standard Code for Information Interchange
{ASCTI) for representing characters where each character has a unique 7+bit binary
value representation. The characters are coded from 0000000 to 1111111, forming a
total of 128 characters.

50

There are few ASCII characters which are unprintable, i.c., they will not be displayed
on the screen. These are used only to perform some specific functions aside from
displaying text. Examples are backspace, newline, alarm.

2.9 CTOKENS

In a C program, tokens are the building blocks. A token is the smallest individual
element or unit in a program. Tokens are composed of the characters, symbols etc.
Programs are coded using these tokens according to the rules of the language. In C
language, tokens can be classified under five categonies and they are:

* Keywords

* |dentifiers

* Constanis

* Operators

s Special Symbols/Characters
Let us consider the following C program.
Program-1:
void main{)
{

int x;

printfl*Enter a number:"),

scanf{*%d"”, &x);

x=x+12%x;

printfi*Incremented value:™, x),
)

Tokens used in the above Program-1 under different categories are presented in the
Table: 2.2.

Type of Tokens Tokens Used

Keywords int, void

Identifier X, main, printf =)
Constant Enter anumber:, 1, 2, Incremented value:
Operators Addressof (&), Addition (+), Multiplication (*)
Special Symbols (hé)he’ % &:

Space for learners
notes

Table- 2.2 Typed of tokens used in Program-1

51

Space for learners
nofes

2.9.1 Keywords

Keywords are the reserved words that have well-defined purposes. A keyword should
be used only for its particular use and not for any other purposes like naming a variable
or function. Keywords, when used in programs, should not be modified or altered
from their defined format.

auto double int struct
break else long swiich
case eum register typedef
char extem retum union
const float short unsigned
continue for signed void
default goto sizeof volatile
do - ¥ static " while

Table 2.3: Complete set of keywords used in C language
They are specific to programming languages, that is, every programming language has
their own set of keywords. Table-2.3 gives the complete set of keywords for the C
language.

2.9.2 Identifiers:

Identifiers are the name given to the entities such as variables, constants, functions,
files, structures etc. Just as persons, cities or streets have names, the C entities such
as variables, functions, files etc. are given unigbe names (identifiers) for their
identification ina C program.
Rules for Naming ldentifiers:
Identifiers are basically composed of alphanumeric characters i.e. alphabets or digits.
The basic rules for naming an identifier are:

% The first character should be an alphabet or an underscore.

¥» No special symbols except the underscore, is allowed in an Identifier.

¥ The Identifiers could be of any length but only the first 31 characters are

gg- uﬁ- m" -

» Keywords cannot be used as identifiers.

Followmng are some examples of identifiers-

Identifier Valid? Remark

Sum wvalid

char invalid keywords are not allowed
price# nvalid special symbols not allowed
var | invalid blank space not allowed

avg um valid

52

Although any combination of letters, numbers and underscore is an identifier, it is
advisable to create an identifier that reflects the meaning and purpose of the entity.

2.9.2 Constants, Operators and Special Characters:

Constants can be defined as fixed values that do not alter during the execution of a
program. Following are the different types of Counstants:

. Integer Constants

. Real Constants

. Character Constants
. String Constants

. Special Character Constants

. Symbolic Constants
Operators are one of the important building blocks in C language. Operators are
used to perform specific mathematical and logical computations/comparisons on
operands. Few examples of operatorsare: +, -, /, * etc.In Unit-Section 2.14,
Operators will be discussed in detail.
Special Symbols are the symbols other than the operators. These are used in
programs for various purposes as and when necessary. Refer to Table-2.2 for special
symbols used in Program-1.
Now, let’s discuss different types of Constants one by one.
» lanteger Constants:
Integer Constant is a whole number (without decimal poinf). It can be defined as
a sequence of digits (from 0 to 9). An integer constant can be preceded by — (for
—ve value) or optional + (for +ve value). Following are some examples of Integer
consianis,

Integer Constant Valid? Remark

1 vahd

300 valid

-20 vahid

+15 valid

20.3 nvalid Not a whole number
(without decimal point)

1,200 imvahd Comma not permitted
between digits

¢ Real Constants:

Real Constant is a number containing fractional part (with decimal point). It is
also called Floating Point Constant. Like integer constant it also can be preceded
by —or optional +, For example following are some valid Real Constants.

205 -12.40 +2.67 -50

Space for learners

Space for learmers
noles

A Real Constant can also be expressed in exponential form. The form is:
manfissa ¢ exponent

Mantissa can either be an integer or a real number, The Exponent is an integer with

— sign or + sign{optional). ‘e’ separates the mantissa and exponent. Instead of ‘e’

we can wrile ‘E’ also. Following examples illustrates this representation.

In Real Form In Exponential Form

1286.45 12.8645¢2 or 12.8645E2

0.034 3.4e-2 or 34E-2

1,200 Comma not permitted between digits

* Character Constants:
A Character Constant is a single alphabet/digit/symbol/blank space enclosed
in single quotes (**). For example, “a’, *A’, *5°, 9" are valid Character Constants.
But do not confuse *5" and 5 as first one is a character constant and other one is an
integer constant.
* String Constants:
A String Constant consists of a sequence of characters (alphabeis/digits/symbols/
blank spaces) enclosed in double quotes (“ “). Following are few examples of valid
string constants.,

“A" “IDOL" *“Hello! Welcome to IDOL™ “142+3+47

* Special Character Constants:

There are some Special Character Constants which are basically used in functions
that display data. These character constants combine ‘\" with an alphabet/symbol.
These character constants are also termed as Backslash Character Constants.
Following Table-2.4 lists the different Special Character Constants available in C

~ Special Character Constants | Meaning
“\n’ adding new line
‘g’ adding an alert(bell)
W applying backspace
"\ adding form feed
= Sng cotriiege sotun
W' T applying horizontal tab
W B applying vertical tab
@9 adding question mark in the output
W adding back slash in the output
W . null value
e adding single quote in the output
" adding double quote in the output

Table-2.4: Special characters available in C

B |

Program-2(in Turbo-C): Using few of the above special character constants
#include<stdio h>
#include<conio h=>
void main{)
i

clrscr();

printf{*Courses offered by GUIDOLAa");

prntf{* \aMA in Assamese™);,

printf{*nMA in English”™);

printf*\MA in Economics™;

printf{*4nMA in History™);

printf{*s\ MA in Political Science™);

printf{*and many other courses\T\INT");

getch();
H
Now, before discussing the Program-2, we need to know some basic statements in
C. Turbo-C, as discussed above, is 2 compiler for Windows which comes in the form
of a software package ﬂDE}umﬂingamﬁmgmnﬂ'mmim,ampil:arﬂm
a C program. In case of Turbo-C (in Windows) the statements,

clrser();

getch();
are necessary. But in case of the Unix/Limix, the above statements are not necessary
al places where they were put in the above program.
The function elrser() is used to clear the screen. [t is contained in the header file
‘comio.h’. It is hasically used in programs using Turbo-C IDE (in Windows) as because
while running the programs the output screen may contain the output from earlier
executed programs. So, here in the Program-2 this function is used before the first
output statement (i.¢. printf). But in Unix/Linux, the C library does not contain the
header file * conio.h’ and so clrser() function cannot be used.
Like clrser() function, the getch() function also contained in ‘conio.h’. 5o, in Unix/
lﬁumﬂﬂsﬁmtﬁmducsnmm%ﬁmﬁmmkﬁachmwﬁﬁmwkeybﬂwd.
In the Program-2 this function is the mentioned as the last statement but logically itis
not required. Calling the geteh() function as the last statement keeps the program
waiting for a character input(i.c. a key to be pressed) to complete execution. This, in
turn, lets the users view the previous outputs displayed on the screen.
The other statements except the last one will display the messages put within *“
(double quotes) on 1o the screen. The printf{) isa function which is used to display
data on to the screen.

Now let’s discuss the output of the above program.

55

Space for learners

Space for learners

moles

Ouiput:

Courses offered by GUIDOL
MA in Assamese

MA in English

MA in Economics

MA. in History\ MA in Political Science

and many other courses?7?

Explanation:

v
v

¥

First printf() displays the message (within “).

Second and third printf() displays the messages (within * *) in new lines
because of the special character constant “\n’.

Fourth printf{) displays the message in new line but after a tab space because
of the special characters “\n' and *W" respectively.

Fifth printf{) displays the message in new line because of the special character
“in".

Sixth printf() displays the message in the same line just after the last message
in the same line printed with the symbol *\' and a single space before the
message because of the special character “* followed by a space. This
message is not displayed in a new line for not using the “in” special character.
The last printf{) displays the message in new line but afier a tab space and
three *7* marks are at the end of the message because of ‘" and three \7
special character constants.

* Symbelic Constants:
A Symbolic Constant can be defined as the combination of a mame (except
keywords) and a constant value.

The syntax of defining Symbolic Constant is

fidefine symbolicconstant-name constant-value

and it should be defined before “main()”. In the process of compiling a program, first
there is a pre-processing step in which, apart from other tasks, symbolic constants
are processed, i.e. wherever in the program the symbolic-constant-name appears
it is replaced by the constant value. Consider the following C program.
Program-3(in Turbo C): Demonstrates the use of Symbolic Constant.
#include<stdio h>

#include<conio h>

#define Pl 3.14

void main()

{

int rad;
float area;

clrser();

printf{*Enter the value of Radius:™);
scanf{"%ed”, &rad);

area = Pl *rad*rad;
printf{*The area of the circle = %f”, area);
getch()y;

Here, in the above program (Program 3) P1 is the symbeolic constant with the value
3.14. So, the statement,

area = PI*rad*rad;

during pre-processing, becomes,
area=3,14*rad*rad;
i.e. Plisreplaced by 3.14(as defined).

CHECK YOUR PROGRESS:
1. Who developed the C language?
2. Why does the C language termed as middle-level language?
3. What is header file?
4, What do you understand by errors in C?
5. What is keyword? Write down five keywords available in C.
6. Write down the rules for naming identifiers in C.
7.1DE stands for ___
8. ASCII stands for
9, Division by zero (D) 152 ETTOor,

2.10 DATATYPES

In a program, we have to work with data along with other functionalities. InaC
Program, we can store/assign data and use the stored data along with other functions.
So, in C language there are various “Data Types™ to cover all the possible data that
can be used in C programs. But C also allows creation of new Data Types and also
customization/enhancement of offered Data Types as per need of a program. Data
Types in C can be broadly classified in three classes (Fig-2.1), namely:

Primary/Built-in Data Type,

» Derived Data Type and.

» Built-in

=

Space for learners
nofes

Space for learners |

Roles

Data Types

Built-in Denved Data User-Defined
Data Types Type Data Types
oid Array Struciure
loat |Uniun
haracter
nie
Fig-2.1: Data Typesin C

2.10.1 Primary/Built-in Data Type:

The Built-in Data Types available in C are listed in Fig-2.2. Basically, C supports
five fandamental types (in Fig-2.2 marked bold and in small cases) and they are
char, int, float, double and void. The others are the extensions (in Fig-2.2 marked
normal) of the fundamental types.

Each of the fundamental type has its size (in bytes) and thus depending on the size
it has value range. The size in bytes (1 byte = 8 bits) and range of each of the
fundamental types are lisied in the following Table-2.5.

Built-in Data Types

| |

Character Integer Float void
char e '_'" _ :“::Ie
signed char o Slgffﬂf l"l_ | ou il
unsigned char — unstgrlmd int ong e
—# short int

=+ signed short int
=* unsigned short nt
= long int

~* signed long imt
e

unsigned long int

Fig-2.2: Built-in Data Types in C

Data Size Value Range
Type (in bytes) |
char 1 -128 to 127
mi 2 -32,768 to 32,767
floea n 34c-38103.4¢+38 |
ﬂh}& B 1.7e-308 to I.TE.:_+3HE

Table-2.5: Data types, size and value range

For a character data, the fundamental type is char and it is of size 1 byte (of
internal storage i.e. primary memory). A character means the value like ‘A’ but from
the Table-2.5 the value range of char is -128 to 127, which is a number range.
Now, you may wonder how a character data is represented internally, i.e. represented
either in the form like “A’ or as a number. It is to be noted that every alphabet/
number/symbol present in a keyboard is associated with an ASCII value (a whole
number). For example, ASCII value for ‘A’ is 65,2’ 1597, '="is 104, "+’ 1s 43 etc.

Integers arc whole numbers, i.e. numbers without decimal point. The fundamental
type for an Integer data is int. The size of int type depends on the word size fora
particular machine. A word is defined as the maximum number of bits that a CPU can
process at a time. The progress in the hardware technology of CPU enables computers
to handle larger amount of bits. A word size can be as high as 64 bits (8 bytes). For
our discussion, let's consider that the word size is of 16 bits (2 bytes).

The terms, short and long (from Fig-2.2), are called Modifiers, 1.e. they are used
to medifi/extend the size of the fundamental types and thus the value ramge also
INCreases.

e Incase of short, the size is same as the size of the associated fundamental
type. For example, sizes of int data-type and short int data-type are the
same, i.e. 2 bytes.

» Buithe long modifier generally dowubles (exception in few cases) the size of
the associated fundamental type. For example, the size of the long int
data-type is 4 bytes, i.e. the double the size of int/short int type (2 bytes).

The terms, signed and unsigned (from Fig-2.2), are called Qualifiers, which have
no effect of the size of the type but have effect on the value range.

* [n case of signed data, the lefi-most bit is reserved for the sign (+ve or—
ve), and so this will allow data to be either negative or positive. Thus the all
the bits present except the lefi-meost one are used for the data.

* [ncase of unsigned data like signed, no bit is reserved for the sign and thus
all the bits present are used for the data.

s [falong with a fundamental type you don’t mention signed/unsigned then by
defauit that fundamental type will be treated as signed one.

And therefore, in signed data, the values ranges from a —ve to a +ve value. Butin
unsigned data, the values ranges from 0 to a +ve value. For example, in case of

5

Space for learners

Space for learners
noles

signed char data-type the size is 1 byte and value range is -128 to 127. But in
case of unsigned char data-type the size isalso 1 byte but the value range is 0 to
255 as for the maximum value (255) all the 8 bits will be 15 [11111111].

—
STOFP TO CONSIDER

The maximum value in 8 bits is 255
(1% 273 (10261925 + (12 29)+ (1% 28)+ (1%23)+ (1% 21)+ (1729)
| 1286+ 64 + 32 + 16+ 8 + 4 + 2+ 1

—

The following Table-2.6 illustrates these more clearly.

Type Size Value Range
_ (inbytes) |
char/signed char 1 -128 to 127
unsigned cher : 010255
intsignedintshortintsigned | 2 132,768 10 32,767
short int
unsigned intAunsignedshortint | 2 010 65535)
long int/signed long int 4 -2,147,483648 1o
2,147,483,647
unsigned long int 1 0 to 4,294,967,295
Float 4 14e-38 10 3.4c+38 |
Double ' g " 1.7¢-308 to 1.7e+308
longdouble 10 3.4e-493210 1.1c+4932

Table-2.6: Signed/unsigned data types with size and value range

2.10.2 Derived Data Type:

Though C supports various of data-types, in practice most of the times a program
requires large amount of data of a particular type to work with. So, to facilitate this, C
needs a powerful data-type for manipulation of large data items of same type. C
comes with a category known as Derived Data Type. Array is the Derived Data
Type supported in C. Basically an array is a list of continuous memory locations (n
primary memory) of same type. Array not only supports fundamental types or its
variations but also User Defined Types (will be discussed more elaborately in
Unit-4).

2.10.3 User Defined Data Type:

The term, “User Defined Data Type™, is self explanatory. This kind of data type is
created by the User (the programmer) according to his'her need. These are of three
user defined data types and they are: Structure, Union and Enum.
Structure and Union will be discussed in Unir-6.
Lets’ discuss about Enum. We know that the set from where an integer, real or
character value can be considered. For example, an integer(int) may be any value
ranging from -32,768 to 32,767 (from Table-2.6). But there may be situations where
we need to restrict the range/pool of values according to the need for a specific
purpose. S0, Enum(enumeration) is a User Defined Data Type that can take one
value from the values those are predefined. enum keyword is used to define the
enumerated data type. The syniax for defining this typeis:

cnum enum-name {value-1, value-2, , value-n};
where, enum-name is the name of type and value-1, value-2,.. .. is the list of values.

2.10.4 Typedef:

The typedef keyword is used to temporarily (in most of the cases) assign an alias
i.e. alternative name to o fundamental/derived/user defined data type.
The syntax for using typedef is:

typedef existing-type-name alternative-name;
For example, in a program we have to work with a data of data-type unsigned long
int. This data type name is a long one. Now, we can assign, say ulint, as a new name
which is much shorter than name of above the type using the typedef. So, we cando
this by using the following statement:

typedel unsigned long int ulint;
Now, in the program, when we have to declare a variable of type unsigned long int
we can use the new name ulint instead. Suppose we want to declare a variable called
SUM of the above type then we can type,

‘ulint SUM;

STOP TO CONSIDER

typedefis used with user defined data types, when names of the data types
become shightly compheated and too long 1o use 1n programs,

2.11 VARIABLES & STORAGE CLASSES:

&1

Space for learners
nofes

2.11.1 Variables:

Constants are the data those remain unchanged during the execution of a C program.
But in a C program we need data those should be able to take different values at
different times. This enforces the requirement for a provision of storages (in main
memery) for storing values(different values at different times) such that at different
times a storage can take different values during the program execution. So,
programming languages provide the concept of Variable. A variable is a named
memory location (in main memory) where one can store different values (of a
particular fype) at different times. [n Program-1, the identifier ‘x’ is a variable
which can store an integer value. Now, you may think of how we can say that
variable ‘x’ is an integer variable!!!
int x;
The above statement in the Program-I ensures that “x' is an integer variable as int is
menitioned before *x”.
Like registering (declaring) a name to a newly created company before it starts
operaling, a variable should also be declared (i.c. named) before itsuse ina C
program.
The syntax for declaring a vanable is:
data-type variable-name;
Here, data-type refers to the type of variable variable-name, i.c. what type of data
the variable can store at a time. This kind of statement is known as Variable
Declaration Statement.
The rules for naming a variable is the same the rules for naming an identifier as
already discussed in Unit Section 2.9.2.
There are different ways for declaration of variable(s) in a C program and these
are:
¥ A variable should be declared as in the syntax mentioned above before its
use.
¥ Variable(s) declaration statements should be the first statements in a function
(e.g., void main() in Program-1).
¥ For declaring more than one variable of same type in one statement, the
syntax is:

int a, b, ¢, sum;
where a, b, ¢ and sum are integer variables. We may also declare the above
four variables individually like,

int a;

imt b

int c;

imt sum;

¥ For variables of different types, different statements are required for each of
the types. Suppose you want to declare a, bas integer variablesand x, y as
floating point variables. Then we have to declare them as:

int a, b;
float x,vy;

2.11.2 Storage Classes:

As mentioned earlier a variable is a storage arca of primary memory where we can
store/assign data in a C program. Apart from primary memory, the CPU registers are
also a kind of memory locations for the variables declared in a C program. Here
comes the concept of Storage Class.

Storage Class is related with declaration of variables. It specifies the part of storage
space (memory/registers) to allocate memory for variables declared in C program. It
also specifies the scope of a variable i.e. the lifetime of'a variable during execution.
Lifetime means that whether the declared vaniable will exists during the execution of
the program or will exists only within the block (generally related with function) in
which the variable is declared. These two kinds of lifetime are termed as Global and
Local. The storage class also determines the variable visibility level i.e. a variable
may has global lifetime but only visible from within the block in which it is defined.
Four storage classes are provided in C and they are automatic, register, stalic, and
external. The storage class specifiers are listed in the Table-2. 7 with their meaning,

_Sll.'llll"lgt Meaning
Class > i
o Local variable with Local lifetime, i.e. only to Function{block) in
which itis declared. It is the defaul specifier
Static Local variable with Global lifetime.
exiern Global variable with Global lifetime, i.e. accessible from everywhere
in a C program.
‘mgister | Local variable whose storage space is the CPU register.

Table-2.7: Storage classes and meaning
Thus, the syntax for a variable declaration that uses a storage class is:
Storage Class Specifier Data_Type Variable Name;

Following are the few variable declaration statements that use the storage class
specifiers.

auto int a; € Automatic Storage Class

static intb; € Static Storage Class

extern charc; €< Extemnal Storage Class

register int d; €Register Storage Class

&3

Space for learners

Space for learners
noles

2.12 OUTPUTANDINPUTINC

Ina C program we have to display, i.e. output, data/messages on to the screen and as
well as to take data as input during the execution. There are functions which are used

for output and input in C.
OutputinC:
As discussed earlier, printf{) function is used to display message, e.g., the statement

printf{*Welcome to IDOL");
will display the message, Welcome to IDOL, on to the screen. The syntax of the
printf{) fumction is(in a simplified form):

printf(Formatted-String, [Variable-1, Variable-2, ...]);

Here, the Formatted-String may only be a string/message to be displayed orbe a
string embedded with Format-Specifiers like %c, %d, %f cic. The Variable-1,
Variable-2, ... are the variables those values to be displayed and these are optional,
i.e. to mentioned as per requirement. The Format-Specifiers specifics, in general,
the type of the variable whose value is to be displayed. Consider the following C
statements.

int &
a=100,
printf{*“The Value = %d™, 2);
The output of the above printf{) function is,
The Value= 100
So, in the place of %d 100 (i.e. value of a) is displayed.

| Following are the Format-Specifiers present in C.

Yc € for char type
Yd or %i € for signed int type
%u € for unsigned int type
%l or %li or %ld € for signed long int type

%lu € for unsigned long int type

%f € for Moat

%If € for double type
%Li € for long doeuble type
%s € for string type (will be discussed in

Unit-4)

Inputin C:
In Program-2, the statement

scanf(*%%d”, &rad);

is an input statement. Here scanf) is the function to take input during the execution of
the program. The symiax of scanf(} function is,

scanf(Formatted-String, & Variable-1, & Variable-2, ...);
Here, the Formatted-String only the string containing the format-specifiers for
the types of the values 1o be input. The Variable-1, Variable-2, ... are the vaniables
to which the inputs are to be stored. The symbol & (before each of the variable
names) used here, is termed as Address-of operator which gives the location address
of the variables those follow it. Consider the following C program.
Program-3: Program which takes a number as input and displays it.
#include<sidio.h>
#include<conioh>

void main()
i
ini a;
clrser();
printf{*Enter an Integer Value:),
scanf(“%d", &a);
printf{*The Value = %d”, a);
getch();
} :
Ouiput:
Enter an Integer Value: 50
The Value = 50
Explanation:
v ‘When the first printf{) executes, it will display the message “Enter an Integer
Value™
¥ The execution of scanfi) function will display the cursor blinking at the end of
the above message. The blinking cursor means the requirement of a value to be
typed-in, i.e. an input, which is an integer as the format-specifier is *%d’. Suppose,
you type the value 50 and now then press the Enter ey 10 complete the execution
of scanf(). Thus input value 50 is stored into the variable a (by accessing the
address of variable a using '& ' operator).
v The last printf{) will now display the message with the value of a, i.e. 50,as in the
mentioned in the output.
Program-4: Program which takes two numbers as input and display them.
#include<stdio.h>
#include<conio bz

Space for learners

Space for learners
noles

void main()

{
int a,b;
clrsen();
printfi*“Enter two numbers: “);
scanf{“%d%d", &a, &b);
printf{**The Values are %d and %d”, a, b);
getch();

b

endpest:

Enter two numbers: 5 100

The Value are 5 and 100

Or, the program can also be written as:

#include<sidio h>

#include<conio.h>

void main()

{
int a,b;
cirsen();
printfi* Enter a number: *);
scanf(*%ed", &a);
printfi*Enter another number:);
scanf{“%d", &b);
printf{*The Values are %d and %d”, a, b);
getch();

!

Dufput:

Enter a number: 5

Enmter another number: 100
The Values are 5 and 100

2.13 OPERATORS

As we understand form the Unit-Section-2.9.2 that Operators are the symbols

those are used to perform certain mathematical and logical computations'manipulations.
In brief, these are used to manipulate data and data inside variables in a C program.

Functionally, operators in C are classified into the following categones:

tilh

Assignment Operator,

Arithmetic Operators,

Relational Operators,

Logical Operators,

Increment and Decrement Operators,

Conditional Operators,

Bitwise Operators and

Special Operators.

Before discussing about the above categories of operators, let’s first discuss about
Expressions and the Assignment Operator *=".

BN D s W=

2.13 Assignment Operator:

From earlier discussions, you hopefully understood how to write a C statement.
Basically, every statement in C is to be terminated by *;" with few exceptions. Those
exceptions are, for example

#include<stdio.h>

#define max 100
Few examples of valid C siatements are,

int X,y

printf{“Welcome to IDOL™);

clrsen();
MNow consider the following staternent,

X=5
The symbol ‘=" used in the above statement, is known as Assignment Operator.
This operator is used to store value 10 a variable, i.. in programming tems *=" operator
is used 1o assign value to a variable, Not only for assigning a value, *=" operator is
also used for

e assigning value of a varable to another variable,
¢ assigning the result of an expression to a variable (will be discussed in2.5.2)

| Space for learners

HOTes

and
 assigning the return value form a function call 1o a variable (will be discussed
in Unit-4),

Few examples of using assignment operator are mentioned the Table-2.8 below:
Examples : Meaning j
A=100 100 is assigned to the vanable A (i.¢., Anow contains 100)
B=A value of A is assigned to the variable B (i.e., B now also

contains 100)

BT

| Space for learners

nofes

Rr—==

C=A+B values of Aand B are added and the total is assigned to the
variable C

VAL=sum(10,20) | the resultof function ‘sum()’ is assigned to variable VAL

| (wll be discussed in Unit: 4; Functions)

Table-2.8: Use of assignment operator

2.13.2 Arithmetic Operators (and Expression):

In the following Table-2.9, the arithmetic operators are listed.

Operators Meaning
+ Addition ERE
- Subtraction or Unary Minus
/ Division
% Modulo (Remainder after division)
Table-2.9: Arithmetic Operators

All of the above operators are used with more than one Operands(i e, data’values);
besides the operators *+" and *-' are also used with one operand. An Operand can
be a variable or a constant. The uses of arithmetic operators are illustrated in the
Table-2.10: Suppose, A and B two integer variables and they contain the values 50

and 10 respectively. :

Operator Example]I Meaning Result
+ A+B Add A with B 60
- A-B Subtract B from A 40

k . A*B Multiply A with B 500
/ A/B Divide A by B 5
% A%B | RemainderfromA
E divide by B
- (unary) -A Multiply A with -1, i.e., -50
will changes A's sign.

‘Table: 2,10: Use of arithmetic operand
A+B, A-B are known as Expressions. An Expression can be defined as the sequence
of operands and operators that reduces to a single value. Suppose we have tousea
mathematical formula “a+b+2ab" in a C program. Now, consider the value of ais 2
and b is 3. So, in a program, for the above tasks we can write statements:

68

ini a, b, res;

=2,

b=3;

res = a+b+2*%a*b;
Except the first one, all the other three statements are Assignment Statements. Butin
the last statement. the lefi-hand side of = is a variable and right-hand side is the
considered mathematical function. Now, here the mathematical formula ‘at+b+2*a*b’
is known as expression.

2.13.3 Relational Operators:

In a C program, we may have to compare two dala and take certain decisions and
this can be fulfilled by using Relational Operators. In short Relational Operators are
used for comparison of two values/values in variables. Tizbie-2.11 presents the relational
operators in C and their meanings.

Operators Meaning |
< ' Jess than '
> greater than
% <= less than or equal to
>e= " | greater than or equal to |
e cqual to
L— bes not equal to

Table-2.11: Relational Operators
Like-wise Arithmetic Expression, a Relational Expression is the expression where a
relational operator is used. The form of a relational expression is given below:

op-1 relational-operator op-2
op-1 and op-2 are may be arithmetic expressions, variables, constants etc. Relational
operators are used in decision making/control statements such as if-else-elseif,

do-while, while,_for etc. You will get acquainted with these kinds of statements in
the following UNTT-3,

Operator | Example Meaning “Result |
] A<B is A less than B FALSE |
> A>B is A greater than B — | TRUE
<= A<=B is A lessthanorequalto B | FALSE
>= A>=B s A greater than o equal to B T mUE |
== A==B__| isAisequaltoB FALSE
= Al=B “isAisnotequalto B TRUE

Table-2.12: Use of relational operators

69

Space for learners
notes

Space for learners
noles

The uses of relational operators are illustrated in the Table-2.12. Suppose Aand B
are two integer variables having values 50 and 10 respectively. As you can see that
the result of each of the expressions is either TRUE or FALSE, which means that ifan
expression satisfies what is it written for then it means TRUE. So, in general relational
operators are used for forming conditions in a C program using conditional/control
staternents for making certain decisions making tasks.

2.13.4 Logical Operators:

Logical Operators are operators which are used to combine more than ooe relational
expression to form a larger relational expression in a conditional/control statement.
Consider a situation where, A and B are two variables containing marks of two subjects
scored by a student im an examination. Now, we have to check that if the mark of
both these subjects (A, B) are greater than 30, then the result will be “Pass™.
Now, you may be thinking of relational expression like A, B> 30. But, this is incomect
as because in a relational expression only two operands can be used with a relational
operator. Thus such situation demands combining more than one relational expression
to form asingle expression. Here, Logical Operators will play their role for what they
are defined in C.

Operators Meaning
&& logical AND

I 1 logical OR
! logical NOT

Table-2.13: Logical Operators

The Table-2.13 presents the Logical Operators defined in C. The uses of logical
operators are illustrated in the Table-2. 14 where suppose A contains 28 and B contains

Operator Example I_I"-'Itaning Result
| && A>30 && B>30 are A B greater than 30 FALSE
] A>30 || B=30 is A greater than 30 OR B TRUE
greaier than 30/both Aand B
greater than 30

Table-2.14: Uses of logical operators

The use of *!" logical operator will be discussed in the following units while working
with different programs.

70

2.13.5 Increment and Decrement Operators:

Like Arithmetic Operators, C offers two other operalors who does arithmetic
operations but in a different style. These two operators are *++ and *—" and they are
known as Increment and Decrement Operators respectively. These operators are
illustrated in the following Table-2.15.

Operators | Meaning
++ adds 1 to the value of the associated operand and update it
— subtracts 1 from the value of the associated operand and update

Table-2.15: Increment and decrement operators

The uses of these operators are illustrated in the Table-2.16 where suppose both x
and y contains 10.

Operator | Example Meaning Result
T =+ | x+ - adds 1 to the value of x "value of x becomes
++x and update x 1
- y— subtracits | from the value | value E-ﬁf becomes
—y of y and update y 92

Table-2.16: Meaning of x-++ and ++x/~-x

Basically, the expression ‘x-++ is same as the expression “x=x+1". From the Table-
2 16t is clear that if x contains the value 10, then the expression ‘x++" will mcrement
the value of x by 1 i.e., value of x will now be 11. Same as in case of the expression
“y—" but here the value of y will be decremented by 1.

From the above Table-2.16, if the expressions ‘x++' and *++x" does the same task
then what is the difference between. The differences in these two expressions lies the
placing of the operand (A)around '++" and also the time of increment.

2.13.5.1 Postfix Increment & Decrement Operations:

Consider the following statement which contains a Postfix Increment Expression.
C= X+
where, C and X are two variables. Suppose X contains the value 10. The above
expression combines of two tasks: one is the increment of X by | and another is the
assignment of the value of the expression "X++ 0 L.
The above example contains the Postfix Increment expression *X++', Now, a
Postfix Increment can be understood by,
» in terms of position of the operator ++; the operand(X) will be placed
before the *++' operator,

|

Space for learners

Space for learners

nofes

» in terms of execution of the expression: first the statement (containing the
increment expression) will be executed and then the increment expression(in
the same statement) will be evaluated, i.e. the value of the operand(variable
X)) will be incremented by 1.

Thus, after execution of the above statement 'C=X++" (where variable C contains
10) the values of:

¥" Cwill be 10 as because the X4+’ is not evaluated during the execution)

v X will be 11 as because the *X++" is now be evaluated(value of X is
incremented by 1).

For Postfix Decrement, consider the following statement (where value contained in
X is 10).
C=X—

Thus, after execution of the above statement the values of
¥ Cwill be 10 as because the ‘X— is not evaluaied during the execution)
v X will be 9 as because the ‘X—"' is now be evaluated and value of X is
decremented by 1.

Example-6: Program to demonstrate postfix increment.
#include<stdio h>
Hinclude<conio h>

void main()

{
int a, result;
clrser();
#3;
result=a++:
printfi*‘Result: %ed”, result);
printf{*nValue of a: %d”, a);
getch();
}
(ruiput:
Result: 5
Value of a: 6

Explanaiion:
¥ In the statement, result=a++, first value of a (i..e. 5) is assigned to variable
result and then a is incremented by 1 (i.e. postfix increment) and the valuve of
a becomes 6.

v The first printfl) staternent will display the value of the variable result, which
is 5 along with the set message in the function.

¥ The second printf) siatement will display the value of the variable a, which is
6 along with the set message in the function.

2.13.5.2 Prefix Increment and Decrement Operations:

Consider the following statement which contains a Prefix Increment Expression.
C=++X;
where C and X are two variables. Suppose X contains the value 10. The above
expression combines of two tasks: one is the increment of X by 1 and another is the
assignment of the value of the expression “++X" to C.
The above example contains the Prefix Increment expression “X++'. Now, a Prefix
Increment can be understood by,
¥ im terms of position of the operator ++: the operand(X) will be placed
after the *++" operator,
» interms of execution of the expression: first the prefix increment expression
will be evaluated and then the statement will be executed, i.e. the incremented
value of X (by 1) will be assigned to C.

Thus, after execution of the above statement *C=++X", the vajues of:
v X will be 11 as because the *++X’ is evaluated (value of X is incremented by
1M
¥ C will be 11 as because the *++X is evaluated before the execution of the
statement completes.
For Prefix Decrement, consider the following statement (where value contained in
X is 10).
=X
Thus, after execution of the above statement “C=—X", the values of:
v X will be 9 as because the ‘—X is evaluated (value of X is decremented by
1).
v C will be 9 as because the ‘—X" is evaluated before the execution of the
statemenl completes.

Example-7: Program to demonstrate Prefix Decrement operations,
#include<stdio h>

#include<conio.h>

void main()

{

int a, result;

73

Space for learners
nofes

Space for learners
Rafes

=5
resuli=—a;
printf{*Result: %od”, result);
printf{*nValue of a: %d"”, a);
getch();
}
Output:
Result: 4
Valueofa: 4
Explanafion:
¥ In the statement, result =—a, first value of a is decremented by 1(i.c. 4)and
then the value of a is assigned to the variable result (i.c. 4).
v The first primtf{) statement will display the value of the variable result, which
is 4 along with the set message in the function.
v The second printf{) statement will display the value of the variable a, which is
4 along with the set message in the function.

2.13.6 Conditional Operator:

?: operator is known as Conditional Operator used in C. This operator is also
called Termary Operator. As we know that operators are generally unary(one

operand) and binary(two operands). As temary means three and so, the *7:" operator
is termed as temary Operator just because of association of three operands with this
operator while writing an expression. The operands may also be expressions also.
The form of an expression which uses ?: operator is mentioned below:
exp=-1 7 exp : expl
where, exp-1, exp-2 and exp-3 may be single variables, may be expressions or may
be combinations of both. Let’s understand the above form with the help of an example.
Consider a, b and res are three integer variables. Now, suppose we want to find the
maximum value between a and b. The following statement will do this task, which
uses the 7: operator.
res=(a>b)7a:b;
Here, (a>b) isthe exp-1, a is the exp-2 and b is the exp-3. Now, you may be getting
puzzied how this whole expression will be performed! Here is the answer given below:
¥" First, (a>h), the exp-1 is performed.
v Now, ifexp-1 satisfics, i.e. a is greater than b, then the value of exp-2 is the
result,

v But if exp-1 does not satisfy, i.¢. a is not greater than b, then the value of exp-
3isthe result.

¥ And the result of the expression will be assigned/stored 1o variable res.
T4

And thus we will get the value of the maximum between a and b in the vaniable res.

Now, suppose variable a contains the value 10 and variable b contains the value 50.
Then, after the execution of the statement value of b will be stored in variable res as
value of b is the maximum which is $0.

Example-8: Program to demonstrate the use of conditional operator for finding
maximum of two input numbers.
#include<stdio h>
#include<conio.h>
void main()
i
int a, b, max;
clrscr();
printfi”“Enter the value of a=");
scanf{*%d”, &a);
printf{* Enter the value of b=");
scanf{*Y%ed”, &b);
max=(a>b) 7a:b;
printf{*Maximum Value: %ed™, max),
getch();
H
Chuipui:
Enter the value of a=100
Enter the value of b=50
Maximum Value: 100
Explanation:
v Suppose, the two seanf() functions take input 100 for a and 50 for b.
v In the statement, max={a>h) ? a ; b, the condition (a>b) is evaluated and
o if condition satisfies, means a is the maximum, the value of a is assigned
10 max.
o if condition not satisfied, means b is the maximum, the value of b 1s
assigned to max,
v The last printf{) function will display the value of the variable max, which is
100 along with the set message.

2.13.7 Bitwise Operators:

Following Table-2.17 lists the Bitwise Operators in C language. These operators
are used for bitwise manipulation of data.

75

Space for learners
notes

Space for learners
moles

[Operators Meaning
& bitwise AND
| bitwise OR
A bitwise XOR -
<< shift bits left
>> | shiftbitsright i

Table-2.17: Bitwise operators

These operators are my not be applied to float or double type of data.

2.13.8 Special Operators

Apart from the operators discussed above, there are other operators in C and they
are
sizeol Operator
lype-Cast Operator: (type)
Pointer Operators: & and *
Member Selection Operators: . and =
The sizeof operator is used to get the number of bytes occupied by a operand/type.
For example, A and S are integer variables. Consider the C statement mentioned
below:

8 =sizeof(A);
Here in the above example the sizeof operator will return the value 2 as A is of int
(inteper) type and the size of int data-type 15 2 bytes, So, value in 8 is 2 after execution
of the above statemeni.
Now, what is Type-Cast Operator, (type)? Basically this operator is used to convert
the type of a data to another compatible type temporarily.
To understand this operator let’s first consider the following statements.

int a=T;

Noat res;

res =all;
So, the variable a is assigned with 7. After the execution of these statements, you may
think that the value in res will be 3.5, But in practice it will be 3. Since; we are dividing
a by 2 where a is an integer and therefore instead of getting 3.5 we will get 3 though
the variable res is of type float.
But we are expecting that the last staternent would assign 3.5 to the variable res. So,
how to get 3.5 as a result of the above expression?? The use of Type-Cast Operator
will give us our expected result, i.e. 3.5 So, we have to replace the expression in the
last statement with the expression *(float) a/ 2" and so the last staternent to be written
as,

T6

res = (float)a/2; |
This means that the value of a (i.e. 7) is temporarily converted to float type (i.e. 7.0) |
without effecting a and then the converted value (i.e. 7.0} is divided by 2. Thus the
result 3.5, will be assigned to res.
The use of Pointer Operator * and Member Selection Operators . and = will be
discussed in the Units 6and 7.
The Pointer Operator & which is known as Address-of Operator is used to get
the address of a location (discussed in section 2.5).
Example-9: Program to demonstrate the use of the sizeof{) and (type) type-cast-
operator. Here in the program the three integer variables subl, sub2 and sub3 are for
storing the marks of three subjects.
finclude<stdio h>
finclude<conio.h>

vioid main()
i
int subl, sub2, sub3;
float average;
ini size;
clrser();
printf{*Enter marks for subject-1, subject-2 and subject-3:");
scanf{*%6d%d%d", &subl, &sub2, &sub3); _ i
average={float)}{subl +sub2+sub3)/3;
printf{(*“The average mark is: %", average);
size=sizeof{int);
printf{™nThe size of int data-type is: %od byles”, size);
getch();
b
Duiput:
Enter marks for subject- 1, subject-2 and subject-3: 50 65 45
The average mark is: 53.3333
The size of int data-type is: 2 bytes

Explanation:

¥ The scanf() statement take three inputs, suppose 50, 65 and 45 for subl,
sub2 and sub3 respectively.

¥ In the statement next 10 scanf() the average of the three marks, taken as
inputs({50, 65 and 45), is calculated. The average may definitely inthe formofa |
floating point mumber. But, all the three variables containing marks are of .

Space for learners

nofes

7

Space for learners
noles

data type int. The expression “(subl+sub2+sub3)/3" will give an integer but
not a fleating point Rumber. So, to get a floating point number the result
of the above expression is temporarily converted into float using the (float)
operator. Now, the result of the expression “{MoatNsubl+sub2+sub3)”
becomes a float value and this is divided by 3 resulting a float value and it is
assigned to the float variable average. Thus the variable average contains the
value 53,3333,

v Inthe statement,
size=sizeof{int);
the sizeof{) operator will give the size of int data type in bytes and this value(i.e.
2) is assigned to the variable size.

2.14 OPERATOR PRECEDENCE AND
ASSOCIATIVITY

When an expression contains more than one operator then the concept of Operator
Precedence applies. Operator Precedence can be defined as the rule for
determination of which operator 1o be performed first, which o be 2 and so on in
case of an expression with more than one operator.

Consider the following statement, where a=2, b=5 and ¢=3.
x=a+b*c;
Now, you can think of how the expression part (right-hand side of =) will be evaluated.
Here the evaluation may take place in two possible ways:
WAY-1:
» At first the values of a and b will be added and then
o the total value will be multiplied by the value inc.
ie. x=(2+5*3
=73
=121

WA¥-2:
& Al first value of b is multiplied with the value of ¢ and then
e the total value is added with the value in a.
ie. x=2+(5*3)
=2+15
=17
We know that WAY-2 is the actual way of evaluating this expression as according to
mathematics, first multiplication(*) operation will take place and then the addition(+).
Thus the value in x will be 17. This is an example of application of Operator
Precedence.

T8

In case of Anithmetic Operators, there are two distinct levels of priority in C and they
are:

High Prionity Operators: * / % (same precedence)
Low Priority Operators: + - (same precedence)

STOP TO CONSID EH

While writing a mathematical expression that contains more than one operator
with different precedence (or with same precedence), use brackets () to specify
the evaluation more precisely. Consider the expression a+b*c and suppose
you want the evaluation as a+b and then multiply with ¢, so to be precise wrile
the expression as (a+b)*c.

Now, let’s try to understand what does Associativity mean? Associativity also can
be defined as the rule which needs to be applied for evaluation when an expression
contains more than one operator with the same precedence. Associativity can be
either Left-to-Right or Right-to-Left.
The Associativity of Arithmetic Operators with same precedence is Lefi-to-Right.
We know that the operators, + and —, have the same precedence. Now, let's see how
the anithmetic expression in the following C statement will be evaluated.
X=10+2-3
Here in the above example, the evaluation of the expression “10 + 2 - 3" will start
from Left-to-Right(because of associativity). So, the evaluation will be in the form
mentioned below:

(10+2)-3

o firstevaluation of * 1042’ will take place, then

e the valpe 3 will be subtracied from the result value of *1H2".
So, after execution of the above statement, the variable X will contain the result of the
evaluation whichis 9.
The following Table-2.14 lists the Precedence and Associativity of the Operators
present in C.

Space for learners
notes

Operator | Description Associativity

() Parentheses
11 Brackets (related to Array)

; Member Selection (using (Object Name) left-to-right
- Member Selection (using Pointer) -
++ — | Postfix Increment/Decrement
++ Prefix Increment/Decrement
+ = Urnary Plus™inus

| -~ Logical negation/bitwise complement

)

Space for learners .
nofes

(hhpe) | Cast (convert value to temporary value of hpe) | right-io-left
. Dereference (related to Pointer)
&. Address of Oper and
sizeof | For Size in Bytes
* /% | Muliplication/Division/Modulus left-to-right
+ - Binary Addition/Subtraction lefi-to-right
<< >> | Bitwise Lefi-Shift, Bitwise Right-Shift left-to-right
< <= | Relational is Less Than/Less ThanorEqual To |
> = Relational is Greater Than/Greater Than or left-to-right
Equal To
== = | Relational is Equal To/is Not Equal To left-to-right
& Bitwise AND left-to-right
n Bitwise Exclusive OR leflo-right
| Bitwise OR left-to-right
&& | Logical AND | left-to-right
T Logical OR | left-to-right
?: Ternary (Conditional) | right-to-left
= Assigniment right-to-left
Comma (for separation of expressions) left-to-right

Table-2.14: Operator Precedence and Associativity

CHECK YOUR PROGRESS:
1. What do you understand by Data Type? Mention its different categories.
2, Mention the fundamental data types in C with their respective size.
3. What is typedef?
4. What is variable? Write down the syntax for declaring a variable.
5. Mention the use of scanf{) function in C.
6. Define the terms: Operator Precedence and Associativity.
7. The size of the char data type is ;
8. Structure is an example of data type.
9. The format specifier for integer (int) typeis .
10. % arithmetic operator is used 1o
State True or False:
11. sizeof() operator gives the size of a given type.
12. - (minus) operator can be used as binary and unary operators.
13. If =10 and b=20, then a>b will be evaluated as TRUE.

14. If x=110, then the output of the following statement is 1.
printf{*%d"™, x++);

15. In postfix increment operation expression, the ++ operator is placed before
the operand.

2.15 SUMMING UP

In this Unit, the history of C language is briefly described. The features of C are listed
more elaborately including the most specific feature as being a middle-level language
which combines the capabilities of a low-level language (i.e. assembly language) along
with the features of a high-level language.

Different steps starting from writing a C program to its execution is described in this
Unit, These steps are described here in a very well-organized manner using different
screen-shots. The steps shown are not only for Windows operating system but for
UUNIX operating system also. The structure of C program is also described in detail.
This Unit describes the emors generally occur during compilation and execution of a
C program with the help of examples. The errors described here are namely Syntax
Errors, Semantic Errors and Run-time Errors,

Here, in this Unit the list of C character set is also given with different characters,
numbers and symbols with their names.

A C program consists of tokens which can be categorically classified into namely:
Keywords, Identifiers, Constants, Operators and Special Characters. All these
different types of C tokens are very elaborately described in this Unit

The concept of data type is described here in this Unit. There are three categories of
data type and they are: Primary/Built-in (e.g., char, int), Derived (e.g., Armary) and
User Defined (e.g., Structure). The size of each of the type is clearly discussed with
different examples.

A variable as discussed in this Unit, is a storage space into which one can store data.
It needs to be declared before its use. In declaration statement, the data type of the
variable should be mentioned. As C language is case sensitive, the case in which a
variable is declared should remain the same during its use in a program.

[nput and Output are basic requirements of a C program. The ‘printf{)’ function is
used to display data/message on to the screen. The *scanf{)’ function is used 1o take
input from keyboard. The syntaxes of these two fumctions are described in this Unit.
There are different types of operators defined in C. Few operators are necessary for
arithmetic expressions while few are useful for conditional expressions and so on. The
operators have precedence and associativity. This Unil gave a detailed descniption
regarding the operators’ precedence and associativity.

L]

Space for learners

Spﬂ(‘; for learners

2.16 ANSWERS TO CHECK YOUR PROGRESS-1

C language was developed in the early 1970s by Dennis M. Riichie who was an
employee from AT&T(Bell Labs).
C Language is also known as middle-level language as its compiler has the

capabilities of s low-level langunge (i.e. assembly language) along with the features
of a high-level language. This is the reason that C language is well suited for
writing both System Software and Application Software.

Like Natural Languages, C language has its library(dictionary) and it consists of
some pre-written files. The pre-written files are known as header files. For example
stdio.h, conio.h are header files.

Errors are the consequences of some mistakes while writing a C program. The
errors are displayed while compiling or running a C program.

Keywords are the reserved words that have well-defined purposes. A keyword
should be used only for its particular use and not for any other purposes like
naming a variable or function. 5

The four examples of keyword are: auto, int, struct, while.

Identifiers are basically composed of alphanumeric characters i.e. alphabets or
digits. The basic rules for naming an identifier are:

¢ The first character should be an alphabet or an underscore.

e Nospecial symbols except the underscore, is allowed in an Identifier.

» Keywords cannot be used as Indentifiers. ’

The identifiers could be of any length but only the first 31 characters are significant.
Integrated Development Environment (IDE)

American Standard Code for Information Interchange (ASCLI)

Runtime error

2.17 ANSWERS TO CHECK YOUR PROGRESS-2

1.

Data type can be defined as the type of data that can be used in a program. C
also allows creation of new Data Types and also customization/enhancement of
offered Data Types as per need of a program. Data Types in C can be broadly
classified in three classes and they are:

e Primary/Built-in Data Type,

¢ Derived Data Type and

¢ User-Defined Data Type.
Basically, C supports five fundamental types and they are char, int, float, double
and void. Their sizes are given in the following table:

7.
8.
9.

10.
1.
12.
13.
14.
15.

Data Type Size (in bytes)
char 1
- 2

- b=
double - .

. The typedef'is a keyword and it is used 1o assign an alias i.e. alfernative name

to an existing findamental/derived/user defined data type. The syntax for using
typedefis:

typedef existing-type-name alternative-name,
A vanable is a named memory location (in main memory) where one can store
different values (of a particular fype) at different times. The syntax for declaring a
variable is:

data-type variable-name;
scanf{) is the function to take input during the execution of the program. The
syntax of scanfi) is,

scanf{Formatted-String, & Vanable-1, & Vanable-2, ...);
Operator Precedence can be defined as the rule for determination of which operator
to be performed first, which to be 2™ and so on in case of an expression with
more than one operator.

Associativity also can be defined as the rule which needs to be applied for evaluation
when an expression contains more than one operator with the same precedence.
Associativity can be either Lefi-to-Right or Right-to-Lefi.

1 byte.

User Defined Data Type

Yed

calculate the remainder in a division operation

True.

True.

False.

False.

False.

2.18 POSSIBLE QUESTIONS

Short answer type questions:

1. Meniion the structure of a C program.
2. What is main()?
3. What does runtime error mean? Explain briefly.

83

Space for learners
nofes

w Sfor learners

noles

-

O

What isvariable? Write down the rules for naming a variable.

Long answer type questions:

l.
2.

With the help of an example explain the structure of a C program.

What do you understand by signed and unsigned? Explain with the help of
examples.

Write a C program which takes two integers as input and display their
summation.

With the help of an example discuss the use of typedef.

Discuss the scanf{) functionin C.

Write a C program 1o demonstrate the difference between Postfix Increment
and Prefix Increment.

What are the consequences of evaluation of an expression with multiple
operators with different precedence? Explain with the help of examples.

2.19

FURTHER READINGS

. Kemighan, B. W, & Ritchie, D. M. (2006). The C programming language,

PHL
Balagurusamy, E. (2012). programming in ANSI C. Tata McGraw-Hill
Education.

Kanetkar, Y. F. (2016). Let us C. BPB publications.

4. Schildt, H., & Turbo, C. (1992). C: The Complete Reference. McGraw-
Hill Inc., New York NY, [/S4, 4, 39.

UNIT3 CONTROLSTATEMENTS,
DECISION CONTROL
STATEMENTS

CONTENTS

3.1 Introduction
3.2 Objectives
3.3 Conditional Statement
331 Theifstatement
3.3.2 Theif else staternent
3.33 Multiple if else statement
3.3.4 Nested if else statement
3.3.5 The Switch statement
3.4 Loop Control Statement
34.1 forloop
342 whileloop
343 dowhileloop
3.5 Comparison of the loop statements
3.6 Nested loop
3.7 goto statement
3.8 break statement
3.9 contnue stalement
3.10 exdit()) function
3.11 Summing Up
3.12 Answers to Check Your Progress
3.13 Possible Questions
3.14 Further Readings

3.1 INTRODUCTION

In C, all statements written in a program are executed from topto bottomone |
by one. In some cases, there may arise some situations where depending upon a :
logical condition, some actions have to be carmried out. Control statements are used to

execute/transfer the control from one part of the program to another depending ona
condition. These statements are also called conditional statements.

Control statements are of the following two types:
&5

Space for learners |

Space for learners

naes

e Conditional control

e Loop control
C has three major conditional control statements:
(a) if statement (b) if-else statement and (c) switch statement
On the other hand, in a program, there may arise some situations where a repetitive
work has to be carried out until a specific condition is fulfilled. In that case, loop
control statements are used in a program. C has three loop control statements: (a) for
(b) while and (c) do while
This unit introduces you the different conditional and loop control statements with
some suitable examples.

3.2 OBJECTIVES

Affter going through this unit, you will be able to:
s know the functions and use of different decision control stalements,
= work with different loop control statements in a program and
* use goto, break and continue statement in a program.

3.3 CONDITIONALSTATEMENT

Conditional statements are used to execute statement or group of statements based
on some condition.
C supports following conditional statements.

1. ifstatement,

2. ifelse statement,

3. ifelseif ladder and

4, nestedif.

3.3.1 The if statement

The ifstatement is a control statement that tests a particular condition. Whenever, the
evaluated condition comes out to be true, then that action or the set of actions are
carried out. Otherwise, the given sets of action(s) are ignored.

The syniax of if stalement is:

ifl condition) {
{istaternent(s) will execute if the condition 15 true
i

Example 3.1 Write a program to display the message “you have entered a +ve
number” if the user entered a +ve number™.

Solution:
#inchude <stdio.h>
#include <conio h>
void main()
{
int nurriber;
clrser();
printf{*‘Enter an integer:\("™);
scanfi %ed”, &number);
if (number > 0)
t
printf{*You have entered a +ve number.™);
i
printf{**n The number you have entered is %d”, number);
getch();
i

When the above code is compiled and executed, it produces the following result:

Oratput 1:

Enteranumber; 10

You have entered a +ve number.
The number you have entered is 10
Owipui 2:

Enter a number: -3

The number you have entered is -5

Example 3.2: Write a program to find the biggest of two numbers

Solution:

#include <stdio h>

#include <conio h=>

void main()

i

int a, b, big;

clrser();

prntfi“Enter two numbers:\t™);

Space for learners
Aoles

scanf{™%d %od", &a, &b},

big=a;

if (b=>big)

big = b;

printf{*“n The biggest number is: %ed” big);
getch();

}

Space for learners

noles

Owutpui:
Enter two numbers: 10 20
The biggest numbers 1s: 20

Example 3.3: Write a program to find the biggest of three numbers.

Solution:
#include <stdio.h>
#include <comio.h>
void main()
{
int a,b,c, big;
clrser();
printf{~Enter three numbers:\t™);
scanf(*%d Yed %d”, &a, &b, &c);
big =a;
if (b > big)
big=b;
if (c> big)
big=c;
printf{*\n The biggest number is: %d™, big);
getch(),
}

Outpui:
Enter two numbers: 10259
The biggest numbers is: 25

STOPTO CONSIDER
| If more than one statements has to be executed in an [f'statement, you should
| write those statements within { and }

3.3.2 The if else statement

If else statement is used to execute a statement block or a single statement depending
on the value of a condition.

The syntax of if else statement is:

iffcondition) {

/* statement(s) will execute if the condition is true */
}
else {
/* statement(s) will execute if the condition is false */
}

If the condition evaluates to true, then the statement(s) inside the if block will be
executed, otherwise, the staternent(s) inside the else block will be executed.

Example 3.4 Write a program to find the biggest of two numbers.

Solution:
#inchide <conio.h>
void main()
{
inta,b.big;
clrser();
printfiC“Enter two numbers:\t"”);
scanf™%d %d™, &a, &b);
if (a>b)
printf{*\n The biggest number is: %d™, a);
glse
printf(*\n The biggest number is: %d”, b);
getch();
]
Output:
Enter two numbers: 10 20
The biggest numbers is 20

Explanation:

Here in this case, 10 will be assigned to the variable a and 20 will be assigned to the
variable b.

Then the staternent if{a>>b) will be tested. Since it is false (as 10 <20), so the statement
unider the else part will execute.

Space for learners
nofes

Space for learners
roles

Example 3.5: Write a program to check whether a number entered by the user is
even or odd. '

Solution:

#include <stdio h>

#include <conio h>

void main() {

intr

clrser();

printf{"Enter a number you want to check: \"");
scanf{"Yod” &n);

if{{n%2)y==0) /* Checking whether remainder is 0 or not. */
prant{* The number %6d is even.” nj;

else

printfi* The number %d is odd.” n);

getch();

)

Outpat 1:
Enter an integer you want to check: 11
11isodd.

Outpat 2:
Enter an integer you want to check: 14
14 is even.

Example 3.6: Write a program 1o check whether a character entered by the user is
vowel or consonant.

Solution:
#finclude <stdio.h>
#include <conio.h>
wvoid main{) {
char ¢
clrser();
; ‘nter a character; \t"™);
scanfi™%c"” &c),
ifle="2"fc="A"e="¢"|le="E'Je=="i"e="T je="0"|c="0"e="u"ce="U")
printf{*%ec is a vowel." c);

else

printfi*“%4c is a consonant.”,c);
Space for learners
getch(); noles
H
Oniput 1:
Enter an alphabet: ¢

eisa vowel.

Output 2:
Enter an alphabet: x
X isa consonant.

Explanation: In this program, user is asked to enter a character which is stored in
variable ¢. Then, this character is checked, whether it is any one of these ten characters
a A e FE il o, O,uand Uusing logical OR operator ||. If that character is any one
of these ten characters, that alphabet is a vowel; if not then that alphabet isa consonant.

Example 3.7: Write a program to check whether a character is alphabet or not.
Solutien:
#include <stdio.h>
#include <conio.h>
void main()
L
charc;
clrser();
printf{*Enter a character: \n");
scanf{" %ec” &c),
ifl (="a’&& c<=="2") | (="A" && c<=="2L"))
printf{“%%6c is an alphabet.” c);
else
i is not an alphabet.” c);
getch(;
}

Outpui 1:

Enter a characier: g
g is an alphabet
Ouiput 2:

Enter a character: #
#is not an alphabet

Space for learners
nofes

Explanation;: When a character is stored in a variable, ASCII value of that character
is stored instead of that character itself. For exampie: If *g’ is stored in a vanable,

| ASCII value of * g’ which is 103 is stored. If you sec the ASCI table, the lowercase

alphabets are from 97 to 122 and uppercase letters are from 65 1o 90. If the ASCII
value of number stored is between any of these two intervals then that chameter will
be an alphabet. In this program, instead of number 97, 122, 65 and 90, we have used
‘a’,‘z’, ‘A’ and ‘Z’ respectively which are part of the same thing.

3.3.3 Multiple if else statement

An if statement can be followed by number of else if else statements, which is very
useful to test various conditions.
The syntax of if else if else statement is

' iff condition 1) {

/* Statement(s) to be executed only when condition | is true */
}
else if{condition 2) {
/* Staternent(s) to be executed only when condition 2 is true */
}
else iff condition 3) |
/* Statemenit(s) to be executed only when condition 3 is true */
}
else {
/* Staternent(s) to be executed only when none of the above conditions are true */

}

Example 3.8: Write a program to check whether a character entered by the user is
uppercase or lowercase.

Solution:
#include<stdioh>
#include<conio. b=
void main ()
chara;
clrsen();
printf{*Enter an alphabetic character: \t");
scanfi™%6c”, &a);
if (a=64 && a<=91)
printf{**The character is an upper-case letter.”),

2

elseif (a> 96 && a<=123)

printf{“The character is alower-case letter.”);
o

printf{*‘This is not an alphabetic character.”);
getch();
)

Output 1:

Enter an alphabetic character: a
The character is a lower-case letter
Output 2:

Enter an alphabetic character: B
The character is a upper-case letter
Output 3:

Enter an alphabetic character: 10
This is not an alphabetic character

Example 3.9: The marks obtained by a student in 5 different subjects are input
through the keyboard. The student gets a division as per the following rules:

(i) Percentage above or equal to 85 - Distinction

(ii) Percentage above or equal to 75 - Star

(iii) Percentage above or equal to 60 - First division

(iv) Percentage between 50 and 59 - Second division

(v) Percentage between 30 and 49 - Third division

(vi) Percentage less than 30 - Fail

Write a program to calculate the division obtained by a student.

Solution:

#inchude<stdioh>

finclude<conio.h>

void main()

{

intm1, m2, m3, m4, m5, per;

clrscr();

printf (“Enter marks obtained by a student in five subjects: \t ™) ;
scanf (“%d %d %d %d Y%ed”, &m|, &m2, &m3, &md, &mS5);
per=(ml+m2+m3+md+m5)/3;

if{ per>=85)

L

Space for learners

Space for learners
nofes

printf (“The result is: Distinction™) ;
elseif ((per>=75) && (per<85))
printf{ “ The result is: Star™) ;
elseif ((per>=60) && (per<75))
printf(* The result is: First division™) ;
elseif ((per>=50)&& (per<60))
prinif{ * The result is: Second division™) ;
else if ((per>=30) && (per<50))
printf (* The result is: Third division™) ;
else
printf{ ** The result is: Fail™) ;

| getch();

Example 3.10: Write a program to display the name of the day in a week depending
upon the number entered by the user.

Solation:
#include<stdio h>
#include<conio.h>
void main()
{
intday ;
clrscr(),
printf (“Enter a number between | and 7: 4);
scanf(“%d *, &day) ;
if (day==1)

printf (“The day is Monday.”) ;
¢lse if (day ==2)

printf{ “The day is Tuesday.”) ;
elseif (day =—3)

printf { “The day is Wednesday.™) ;
else if (day =—4)

printf { “The day is Thursday.”),
else if (day ==5)

printf (“The day 1s Friday.”) ;
else if (day =6

printf (“The day is Saturday.”) ;
else

o4

printf (“The day is Sunday.”) ;
getch(),
}

3.3.4 Nested if else statement

An if statement may have another if statement in the true condition block and false
condition block. This compound statement is called mested if statement. There may
be any number of if statements in the nested form.
The syntax of mested if statement is:
if { condition 1)

if (condition 2)

{

<true block 1=

H
else
{
<false block 1>
}
else
if { condition 3)
{
<true block 2>
}
else
{
<false block 2=

}

Example 3.11: Write a program to find the biggest of any three numbers entered by
the user using nested if else statement.

Solution:
#include<sidio h>
#include<conio h>

vioid main()
{
inta, b, c,big ;

Space for learners

clrser();

printi{“Enter the first number: 't");
scanf{“%ed” &ta);

printf*“nEnter the second number: \t™);
scanf{™%d”, &b);

printi{* nEnter the third number: \(™);
scanf{*%%d”, &c);

if{a>b)

if(a>c)

Space for learners
nofes

big = b;

big=c;
printf{*The biggest number is %d™, big);
| getch();
)

Example 3.12: Write a program to check whether a year is leap year or not.

Solution:
#include <stdio.h>
ffinclude <conio.h>
void main{){
int year;
clrscr();
prntf{“Enter a year: \t”);
scanf{™%d" & year),
ifl year%4 =10)

{

if{ year%100==0) // Checking for a century year

if { year%400 == 0)
printf{*%d is a leap year.”, year);
else

printf{*96d is not a leap year.”, year);
%

Space for learners

else notes

printf{*%d is a leap year.”, year);

}

else

printf{*%d is not a lcap year.”, year),
getch(),

}

Output 1:

Enter year: 1900

1900 is not a leap year.

Output 2:
Enter year: 2012
2012 is a leap year.

CHECK YOUR PROGRESS |
1. Differentiate between if and if else statement.

--

3. What will be the output of the following C code?
void main()
{

int #=20.b.c;
if (a=35)

o7

| Space for learners
nofes

b=20;
c=25;
{
printf{*The value of b=%d and c=%d”, bc);

3.3.5 The swiich statement

Instead of using the if else if statement, the swifch statement can be used. The swirch
statement is used to execute a block of statements depending on the value of a vanable
or an expression. The syntax of the swirch statement is as follows:
switch({<expression>) {
case<label 1>;
statement(s),
break;
case<label 2>
statement(s);
break;
case<label 3>:
statement(s);
break;
// you can have any number of case statements
default :
statement(s);
break;

Let us discuss about the above synitax of the switch statement.

The control statement switch begins with the switch keyword followed by
one block which contains different cases. Each case handles the statements
corresponding to an option i.e. <label 1>, <label 2> etc. (a satisfied condition)
and ends with the break statement which transfers the control out of the
switch structure to the original program.

¢ The compiler checks the values of the expression or variable. Ifthis value
matches with any one of the labels given in <case> value, then that stalement
block will be executed.

¥

» Thebraces { | can be omitted when there is only one statement available in
the statement block.

e Here the variable between the parentheses following the switch keyword is
used 10 test the condition and is called the control variable.

e Break is a statement which will transfer the control to the end of swiich
statement. (The details about the break statement will be discussed in the
next section)

o The defauli block is optional i.. this may be omitted while writing a program.

STOP TO CONSIDER

The control variable of the switch statement can only be of the type int, long or
char. Switch statement is compact and can be used 1o replace a nested if
statement.

Example 3.13: Using switch statement write a program to display the day of a week.
When user types 1, Monday should be displayed, for 2 Tuesday .. .ete.

Solution:
#Hinclude<stdio h>
#include<conio.h>
void main()

{

int choice;

clrser();

printf{(*Enter your choice between | and 7:17);
scanf{*%%d”, &choice);

switch (choice)
{
case |:
peintf{"Monday™);
break;
case 2! printi{* Toesday™);
break;
case 3:
print{* Wednesday ™),
break;
casc4:
print{" Thursday”,
break:;

. Space for learners

nates

Space for learners ‘

notes

case 5;

printf{* Friday™);
break;
case 6:
printfl“Saturday™);
break:
case 7:
intf{"“Sunday™);
break;
default:
printf{*“Invalid choice. Enter your choice between 1 and 77);
break;

Example 3.14: Write a program which will read two numbers from the user. Now
perform the addition, subtraction, multiplication and division operations according to
the need of the user.

Solution:

| Finclude<stdio h=
Hinclude<conio.h>

void main{)

{
int a,b,choice;
clrscr();
printf{“Enter two numbers:\{");
scanf"Ved%d” &a & b);
printf{*“\nEnter your choice between | and 4:\t™);
printf{*4n{ | |. Addition\n™);
printf{*[2]. Subtraction\n"),
printf{*{3]. Multiplication\n™);
printf{*{4]. Division\n™);
scanfi™%ed”, &choice);

switch (choice)
{

1o

case |:
i addition of %d and %d is: %d” a,batb);”
break;

case 2: printf{*The Subtmaction of %d and %d is: %d”,ab,a-b);

break;

case 3:

i Multiplication of %ed and %d is: %ed” 2 ba*b);

break;

case 4.
printf{*“The Division of %d and %d is: %d"a,ba’b);
break;

defaulc
printf{(*“Invalid choice. Enter your choice between | and 4”);
break,

]

getch();

STOP TO CONSIDER

The default block is executed when none of the case labels matches with the
value of the expression/variable

-

CHECKYOUR PRﬂhRESS r]

4. State whether the following statements are true or false:
a) Every if statement can be converted into an equivalent switch stalement.
b) ‘default’ case is mandatory in a swilch stalement.
¢) Anifstaternent may contain compound statements only in the else clause.
d) A break statement must be used following the staternents for each case

ina switch statement.

¢) The control variable of the switch could be of type int, long or char.

3.4 LOOPCONTROLSTATEMENT

In programming, there may arise some situations where a repetitive work has to be
carried out. For example, suppose we want to display the sentence “IDOL, Gauhati
University”™ 100 times. What will we do 7 We can display the sentence by writing 100
printf{) statements. But, it will be & time consuming process. Similarly, suppose we

want to display the numbers between 1 and 1000. So far we have learnt only one
10

Space for learners
notes

Space for learners
nofes

solution, displaying the numbers with 1000 printf() statements. But, this is not a solution.
The solution is, we have to use loop.

Loop control structures are used to execute and repeat a block of statements
depending the value of a condition. This condition causes the termination of the loop.
In C, there are three iypes of loop conirol statements.

s forloop
s while loop
e do while loop

In the following sections, we will discuss the use of these three loops with some

examples.

3.4.1 The forloop
The symtax of for loop is:

for (expression-1; expression-2; expression-3)

{
statement 1; "‘\]
staternent 2; ,ﬂ'
................... body of the loop
staternent n;
¥

= expression-1 contain inifializationstatement(s).
The stafememtys) are assigrment statement(s) used to set the loop conirol

variable/variables. These starement/statements will execure before the first
iteration of the loop.

* expression-2 contain condition(s).
The condition(s), that determine the termination of the loop. Before every
iteration, the condition(s) is/are checked and if found frue then the next fferation
will take place.

* expression-3 contain increment or decrement siatemeni(s).
The starement/statemenis denote how to change the siates of the conirol
variable(s) after each ireration.

= the section within “{* and “}" is called as the body of the loop.

Example 3.15: Write a C program to display all the numbers between 1 and 100.

Solution:
finclude<sidio h>

| #include<conio.h>

}-md o Space for learners
- notes
inti;
clrser();
printf{*“The nos. between 1 and 100 are: \n”™);
for(i=1; i<=100; i++)
i
prntf{%eda”, i);
H
getch();
)

Explanation:
In the “for™ loop,
 inexpression-1, the variable “i" is initialized tolas the starting no. of the
rangeis 1.
* in expression-2, the condition is sel as “i<=100" because the loop will
continue as long as the value of “i" remains less than or equal to 100.
s inexpression-3, the value of “i” is incremented by 1 after each iteration.
« inthe hodyofthe loop, the “printf])" will display the current value of “i" with
a space in between.
Thus the numbers between 1 and 100 will be displayed.

Example 3.16: Write a C program to display all the numbers between | and 100
those are divisible by 3.

Solution:
#include=stdio h>
#include<conio.h=

printf{*The numbers, divisible by 3, between 1 and 100 are: \t”);
for(i=1; i<=100; i++)
{

ifi(i%3=0)
{

printf*%ed \t", i);

Space for learners

In the “for™ loap,

* inexpression-1, the variable “i" is initialized to 1 as the starting no. of the
rangeis 1.

* in expression-2, the condition is set as “i<=100" because the loap will
continue as long as the value of *i" remains less than or equal to 100.

* inexpression-3, the value of “i” is incremented by 1 after cach ireration.

In the body of the loop,

® the remainder of the division, “i"" by 3 is calculated and compared equality 1o
0 using “if” staternent.

* and if the condition satisfies, ie. the current value of*i" is divisible by 3, then
“printf{)" will display the current value of “i" with a space in between. (W
means a space with tab)

Thus the numbers, those are divisible by 3, between 1 and 100 will be displayed.

Example 3.17: Write a program to find the sum of first m natural numbers where n is
entered by user. (Note: 1,2,3... are called natural numbers.)

Solution:

#include <sidio h>
#include<conio h>

void main()

{

int n, i, surm=(;

clrser();

printf{*Enter the value of n; \™);
scanf{* %ed" &n);

| for(i=1; i==n; i++) /for loop terminates if i>n

{

Sum=sum +1;

)

printf{*“The summation of the numbers between 1 and %d is: %d”, , n, sum);
getch();

H

14

Output:
Enter the value of n; 19
The summation of the numbers between 1 and 19 is: 190

Explanation: In this program, the user is asked to enter the value of n. Suppose
you entered 19 then; i is initialized to 1 at first. Then, the test expression in the for
loop, i.e., (i<=n) becomes true. So, the code in the body of for loop is executed
which makes sum to 1. Then, the expression i++ is executed and again the test
expression is checked, which becomes true. Again, the body of for loop is executed
which makes sum 1o 3 and this process continues. When count is 20, the test condition
becomes false and the for loop is terminated

Example 3.18: Write a program to display all the even and odd numbers between
10and 100. Also display the summation of all the even and odd numbers separately

Solution:

tinchide <sidio.h>

#inchude<conio. h>

void main()

{

int i, sum=0(,

clrser();

for(i=10;i<=100; i++)

{

if(i%2==0)

printf{“‘inThe even numbers between 10 and 100 are: %d\t™, i);
Surme=sum + i;

i

printf{*4nThe summation of all the even numbers between 1 and 100 is: %d", sum};

/* sum is again initialised to 0 1o calculate the summation of all odd numbers between
1 and 100 */

sum = (0;

for(i=10; i<=100; i++)

i

if (i%2!=0)

printf{*4nThe odd numbers between 10 and 100 are: %d\t”, i);

sumF=sum + i,

}

prntf{*“nThe summation of all the odd numbers between | and 100 is: %d”, sum});

getch();
H

105

Space for learners

nofes

| Space for learners
' notes

Example 3.19: Write a program to display all the even and odd numbers between a
range of numbers where the starting number and the ending number of that range wll
be provided by the user. Also display the summation of all the even and odd numbers

separaiely within that range.
Solution:
This program is same as the Example 3.18. Here the only modification is that the

starting number and ending number of the for loop is not fixed. Those two numbers of
the range will be inputted by the user. Let us solve the problem as below:

#inchude <stdio.h>

#include<conio.h>

void maing)

{

intstart_no,end no, 1, sum={;

clrscr();

for(i=start_no; i<=end_no; i++)

i

if (1%2==())

printf{*“nThe even numbers between %d and %ed are: %d\t”, start_no,end_no, i);
S5 + i;

H

printf{*nThe summation of all the even numbers between %od and %d is: %ad”, start_no,
end_no, sum);

| /* sum is again initialised 1o 0 1o calculate the summation of all odd numbers between
| starting number and ending number of the range */

sum= (),

for(i=start_no; i<=end_no; 1++)

{

if (i%21=0)

printf(*inThe odd numbers between %d and %d are: %d\t™, start_no, end _no, i);
sum=sum +1;

i

printfl*nThe summation of all the odd numbers between %d and %d is: %ed™, start_no,
end_no, sum},

getch();

H

Example 3.20: Write a program to find the factorial of a number.

106

Solution:
Hinclude<stdio h>
#include<conio h>
void maind)
i
intn,i;
long int fact;
printf{**Enter an number; \t™);
scanf{™%ed”,&n);
if (n==0)
printf{*\nFactorial of 0 is 1'n™);
clse
{
fact=1;
for(i=1; i<n; i++)
fact=fact* i,
printf{* The factorial of %d is %6d:", n, fact);

Enter an integer: 3
Factorial =6

Explanation: For any positive number n, its factorial is calculated as factorial =
1%2*3%4..*n

Example 3.21: Write a program to check whether a given number is prime or not.

Solution:

#include<stdio.h>
fiinclude<conio h>

void main()

l

intn, i, flag=0;

clrser();

printf{“Enter a positive integer: ©);
scanf{*%od"” &n);
for(=2;1<=n/2,++)

197

“ Space for learners

nefes

Space for learners

Roes

ififlag==0)

printf{*%4d is a prime number.” n);
else

printf{*“%d is not a prnime number.”,n);
getch(};

L3

Output
Enter a positive integer: 5
5 is a prime number.
Explanation: This program takes a positive imeger from user and stores it in varisble
n. Then, for loop is executed which checks whether the number entered by user is
perfectly divisible by i or not starting with initial value of { equals to 2 and increasing
the value of i in cach iteration. 1f the number entered by user is perfectly divisible by
i then, flag is set to 1 and that number will not be a prime number but, if the number
is not perfectly divisible by / until test condition i<=n/2 is true means, it is only divisible
by | and that number itself and that number is a prime number.
3.4.2 The while loop
The syntax of while loop is:

expression-1;

while{expression-2)

{

...................

................... body of the loop

}

* expression-1 contain initialization statement(s) which is/are is mentioned before
the starting of the while loop.

The statement(s) are assignment statement(s) used to set the loop control
variable(s). These statement(s) will execure before the first iteration of the
loop.

* expression-2 contain condition(s).
The condition(s), that determine the termination of the loop. Before every
iteration, the condition(s) isfare checked and if found true then the next iteration
will take place.

= expression-3 contain incremeni/decremeni siatement(s).

The statement(s) denote how to change the states of the control variable(s) in
cach iteration.

s The section within *{* and “}" is called as the body of the loap.

Example 3.22: Write a program to display all the numbers between two input numbers
Solution:
#include<sdio >
#include<como.h=
void main()
{
int start_no, end_no, i;
clrser();
printf{" ‘Enter the Starting No:\™);
scanf(*4od™, &start_no);
printf{* Enter the Ending No:\t™);
scanf"%ed”, &end_no);
printf{*“The numbers between %6d and %ed are:\n", start_no, end_no);
=start_no;
while(i<=end_no)
{
printf{™Ved\t”1);
G
}
getch();
)

Explanation:

» Two numbers are taken as input using the “scanf{)” function and stored into

the variables “start_no™ and “end_no™.

[

Space for learners

 Inexpression-1, the variable “i" is initialized to the value of the variable

Space for learners “start_no" as the starting no. of the range is in this variable.

= » Inexpression-2, the condition is set as “i<=endno” because the loop will
continue as long as the value of *i" remains less than or equal to the value of
the variable “end_no".

o Inside the body of the loop, the “printf{)” will display the current value of*§"
with a space(\t is used for tabbed space). In expression-3, the value of “i” is
incremented by 1.

Example 3.23: Write a program to display sum of all the digits of a number entered
by the user.

Solution:

#include<stdio h>
#Hinclude<conio.h=>

void main{)

{

, int num, rem, quo,sum=(;
printf(”Enter a number:\t");
scanf{*%6d” &num);
while(num={)

{

rem = num%e1{;
quo = num/10;
SUMm = sum + rem;
M = Ui
H
printf{**The sum of digits of the number is %ed”, num, sum);
getch();
)

Output:
Enter a number: 12345
The sum of digits of the number is: 15

| Example 3.24: Find factorial of a number using while loop.
Solution:

finclude<sidio h>

#include<conio.h>

void main()

{

1o

int num, fact;

printf{“Enter a number\{™);
seanf{od"” &num);
fact=1;

while(num=>0)

i

fact=tact*num;

—um;

H

printf{*Factorial is: %d”,num, fact);
getch()y,

H

Output:
Enter a number.5
Factorial=120

Example 3.25: Write a program to display the Fibonacci series up to n number of
terms using while loop.

Solution:

fiinclude<stdio h>
ffinclude<conio.h>

void main()

{

int count, o, t1=0, 12=1, display=0;
printf{"‘Enter number of terms:\™);
scanf{" Ved".&n);

* Displaying first two terms */
printi{Fibonacci Series: Yod+%ed 47, t1, £2);
count=2; // count=2 because first two terms are already displayed.
while(count<n)

{

display=t]+2;

ti=t2;

2=display;

++eount;

printf{*Yod+" display),

)

getch();

i

11

Space for learners
nolex

Space for learners
notes

Output

Enter number of terms: 10

Fibonacci Series: 0+ 1+142+34+5+8+13+21434+

Suppose, instead of number of terms, you want to display the Fibonacci series until
the term is less than certain number eniered by user. Then, this can be donc using the
code as below: ;
/* Displaying Fibonacci series up o certain number entered by user. */
#Hinclude<sidio.h>

#include<conio.h>

void main()

{

int t1=0, 2=1, display=0, num;

printf{“Enter an integer: \t"),

scanf{*%od” &num);

/* Displaying first two terms */

printf{*Fibonacci Series: Y%d+%d+", 11, 2);

display=t]-+2;

while(display<num)

{

printfl™%ed+" display);

=2,

R=display;

display=11-+2;

H

getch();

}

Output
Enter an integer: 200
Fibonacci Seres: (414142434 5+8+13+21+34+55+89+ 1 44+

Example 3.26: Write a program to display the number of digits of an input number.

Solution:
#include<sidio b>
#include<conio.h>
void main()

{

long int n, count=0;

112

printf{*Enter an integer: \t");
scanf*%eld” &n);

while(n!=0)

|

m=n/10;

+=count;

H

printf{*Number of digits: %ed”, count);
getch();,

}

Output
Enter an integer; 34523
Number of digits: 5

Explanation: This program takes an integer from user and stores that number in
variable n. Suppose, user entered 34523. Then, while loop is executed because n!=0
will be true in first iteration. The codes inside while loop will be executed. After first
iteration, value of n will be 3452 and count will be 1, Similarly, in second iteration n
will be equal to 345 and count will be equal to 2. This process goes on and afer
fourth iteration, n will be equal to 3 and count will be equal to 4. Then, in next
iteration n will be equal to 0 and cowew will be equal to 5 and program will be terminated
as n!=0 becomes false.

Example 3.27: Write a program to display character from A to Z using while loop.

Solution:
#include<stdio h>
#include<conio h>
void main()

{

charc;

clrser();

c="A’;

printf{“The letters from Ato Z are\n™);
while(c<="Z")

{

printf{*%c “,c);
++C;

}

geich();

113

I Space for learners
! nofes

| Space for learners
nofes

}
Output

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Example 3.28: Write a program to display the reverse of a number input by the user.

Solution:

finclude<stdio h>
#include<conio h>

void main()

i

long int num, rem_reverse={);
clrser();

printf{*“Enter a numbert™);
scanf™eld” Lonum),

while(num '=0)
I
rem = num¥ol (;
reverse = reverse* 10+ rem;
num = numy' 10;
}
printf{"“\nThe reverse number is %6ld” reverse);
getch();
}
3.4.3 The do while loop
The syntax of do-while loop is:
expression-1;
do

expression-3;
}while{expression-2);

body of the loop

= expression-1 contain initialization starement(s) which is‘are mentioned before

the starting of the while loop.

114

The siatemeni(s) are assignmeni siatement(s) used 1o set the loop control
variable(s). These statemeni(s) will execute before the first iteration of the
loop.

» expression-2 contain condition(s).
The condition(s), that determine the termination of the loop. After every iteration,
the condition(s) is/are checked and if found frue then the next iteration will take
place.

= expression-3 contain increment/decrement statemeni(s).

The statement(s) denote how to change the states of the control variable(s) in
each iteration.

» The section within “{* and “}" is called as the body of the loap.

Example 3.29: Write a program 1o check whether an input character is a vowel or
not. The program should continue as many times the user wishes.

Saolution:
#include<stdio.h>
#include<conio h>
void main()
{
char ¢, ans;
do
{
clrsen();
printf{*Enter the character to check:4"™).
scanf{*Yec”, &c);
switch(c)
{
case ‘a’:
case "A':

case ‘o'
case "0

case "u';

case "U": printf{" The input character is a vowel"),
break;
default: printf{*The input character is not a vowel™);
115

e ———————
[1

Space for learners
notes

Space for learners

noles

}
printfi*\nDo you want to continue(y/n):™);
scanf{"%c", &ans);
)while(ans =="y');
gewch(),
}

Explanation:
¢ Inside, the do-while loop
» First, the character to be checked is taken input in vaniable “c”.
e [Inthe “swilch” statement, since the output will the same for all the vowels
[ie. @', 'A', "e’, E", 1", 'T", ‘0", 'O’ ‘0, *U’], the cases with all the
vowels(small letter and capital letter) are mentioned serially and in the last
case, i.e., “case ‘U’, the display statement is mentioned for displaymg
“The input character is a vowel”. And then because of the “break™
statemnent, the “switch” statement will end.
The case *default” will satisfy if all the above cases do not satisfy and
“The input character is not a vowel” will be displayed and the “switch™
statemnent will end.
* After “swiltch” statement, the user is asked whether he/she wishes to
continue by taking a character input 1o vaniable “ans”.
Inthe condition inside “while™ the value of variable “ans™ is compared with
— character 'y’ for equality and if it satisfies then the “do-while™ loop wall continue
otherwise the “do-while"” loop will terminate and thus the program ends.

116

35

COMPARISION OF THE LOOPSTATEMENTS

for loop

while loop

do-while loop

A for loop is used
to cxecute a block
of statements
depending on the
condition which is
evaluated at the
beginning of the
loop.

A while loop 1s
used to execule a
block of statements
depending on the
condition which is
evaluated at the
beginning of the
loop.

A do-while loop is
used 1o execule a
block of stalements
depending on the
condition which 18
evaluated at the end
ofthe loop.

The |block of
sitements will not
be executed when
the condition does
mot satisfy, ie,
value of the
condition is false.

Varigble(s) is/are
initialized at the
beginning of the
loop which is/are
used to control the
loop.

The block of
staternents will not
be executed when
the condition does
not satisfy, ie,
value of the
condition is false.

Variable(s) is/are
nitalized before
the starting of the
loop which isfare
used to control the
loop.

The
statements will not
be executed when the
condition does not
satisfy, ie., value of
the condition is false
but the block will
execute at-least once
irespective of the
value of the
condition.

Variable(s)
initialized before the
starting of the loop
which isfare used to
control the loop.

block of |

- igfare

The statements 1o

change the state of |

the control
variable(s) is/are
mentioned within “(
)" in expression-3.

The statements to
chanpe the state of

the control
variable(s) isfare
mentioned just

before the end of
the body of the
loop.

The staitements 0
change the state of
the control
variable(s) is'are
menticned just
before the end of the
body of the loop.

117

Space for learners
notes

nofes

Space for learners] 3.6 NESTEDLOOP

A loop may contain another loop within its body. This form of loop inside a loop is
called nested loop. In a nested loop, the inner loop must terminate before the outer
loop can be ended.

Example 3.30: Write a program to display the multiplication table of 1, 2 and 3.

Solution:
#include<stdio.h>
#include<conio h>
void main()
{
intij;
clrsen();
printf{“The multiplication table from 1 to 3 are’n™);
for(i=1:<=3i++)
{
for(j=13j<=10;j++)
printf"%d X %d =%d\n", i,j,i*j);
printf{"n”);
}
getch();

3.7 GOTOSTATEMENT

The goto statement is used to transfer the control in a program from one point to
another point unconditionally. This is also called unconditional branching. The syntax
of the geto statement is:

poto label;
where label is a valid indentifier to indicate the destination where a control can be
transferred.

Example 3.31: Using goto statement, write a program to display the larger number
of two numbers entered by the user.

finclude<stdio h>
#include<sudio h-
void mam()

t

18

int a,b;
clrscr(),
printi{™ Enter two numbers:\t™)
scanf{“%d%d"”, &a &b);
if (a>h)
goto label | ;

Space for learners

neles

clse
goto label2;

labeil:
printf{*The larger number is:%d\n" a);
goto end;

printf{*“The larger number is:%d\n",b);

return ();

}

Output:
Enter two numbers: 1020
The larger number is: 20

3.8 BREAKSTATEMENT

The break statement causes an immediate exit from the innermost loop. When the
keyword break is encountered inside any loop, control automatically passes 10 the
statement afier the loop. The break statement can also be used with swiich statement
that we studied earlier.

Example 3.32:
#include <stdio h>
#include <conio.h>
void main(){

inl i, numg;

clrser();

for (i=1:1<=10;++)
{ .
printf{*n\nEnter a number:\t”),
scanfi*%oed” Snum);

if (num<0)

{

119

Space for learners
noles

printf{*in You have entered a -ve number.\n™):
break;
!
printf{*\nThe value of i in the loop is: %d™, i1);
printf{*‘nThe number you have entered is: Yed™, num);
}
i “nGood bye™);
getch(),
)

Output:

Enter a number: 10

The value of i in the loop is:1

The number you have entered is; 10
Enter a number: 20

The value of i in the loop is: 2

The number you have entered is: 20
Enter a number; -5

You have entered a -ve number,
Good Bye

Explanation:

Here is this case, when we put the value as -5, the statement “if{ num<0)" returns true,
so the statement “You have entered a -ve number.” is displayed. Since we have used
a break statement after that statement, the program control terminates the loop
immediately. So, the statements i.¢, pantf{**nThe value of i in the loop is: %d”, i); and
printf{"“inThe number you have entered is: %d”, num);are not displayed and the
statement printf{*“\nGood bye™);is displayed.

3.9 CONTINUESTATEMENT

Sometimes we want to take the control 1o the beginning of the loop by passing the
statements inside the loop which have not yet been executed. The continue statement
forces the next iteration of the loop 1o take place, skipping any statemnent(s) following
the continue statement in the body of the loop. The syntax of the continue statement
S

confiniie;

STOP TO CONSIDER
cortinwe statement is not used with swiich statement

—

120

Example 3.33: I T—

#inchude <stdio.h> ey
finclude <como h>

void main(}{

int1, value;

clrscr();

for (i=1;i<=4;i++)

{

printf{“n\nEnter a number:\t”),

scanf{*%ed”, &value);

if (value<=0)

{

printf{*nZ.ero or -ve value found\n™);
continue;

1

printf{*nThe value of i in the loop is: %ed™, i);
printf{*“nThe entered number is: %d”, value);
)

getch();

H

Output:
Enteranumber: 10

The value of i in the loopis: |
The entered number is: 10
Enter a number: 20

The value of i in the loop is: 2
The entered number is: 20
Enter a number: -5

Zero or -ve value found
Enter a number: 30

The value of i in the loop is: 4
The entered number is: 30

Explanation:

In the above example, when we put the value as -5, the if condition retums true and
the statement inside the ifblock “ Zero or -ve value found * is displayed. But since
there is a continue statement afler that stalement, the program control skips the next
two printfl) statements and goes to the next iteration of the loop.

121

Space for learners
noles

3.10 EXIT() FUNCTION

The function exit() is used to terminate the program execution immediately. The syntax

E

exit(status},

where ‘status’ is the termination value returned by the program and is an integer.
Normal termination usually retums 0.

m———

a)

b)
c)
d)
c)
f)

2
h)
0]
i1

k)

o)

P

r)

a)

CHECK YOUR PROGRESS 3

5. State whether the following statements are true or false

The while and for loops cannot be nested loops the way if statement can
be nested.

Loop is a mechanism to execute a set of statements a number of times.
The break statement help immediate exit from any part of the loop.

A while loop may always be converted to an equivalent for loop.

In a C program, use of goto statement is generally not recommended.
You can use one break statement in one loop.

The exit() function causes an exit from a function.

It is not possible to have a switch statement nested within while or for
loops.

A continue statement causes an exit from a loop.

A do while loop is useful when the body of the loop will be executed at
least once.

Multiple increment expressions in a for loop expression are separated
by commas.

If a loop does not contain any statement in its loop body it is said to be
anempty loop.

A loop can contain another loop in its body.

The while loop evaluates a test expression before allowing entry into the
loop.

In nested loops, the inner loop must terminate before the outer loop
Emminaies.

Statements inside a do while loop will be executed at least once.

The continue statement is used to skip some statements within a loop
and start next iteration.

The break statement is used when it is required to exit from a loop other
than by testing of termination condition.

6. Fill in the blanks:

statement itself.

12

b) Nesting can be done uﬁtnd—h:w:] for while loop.

¢} Example of an infinite loop is

d) A is used to separate the three parts of the loop expression
in a for loop.

¢} When the _statement is executed, the program skips the
remaining stalements in the loop and goes back 1o test the loop condition.

fi Aninfinite for loop has Missing expression.

2 A___ loop can also be an empty loop, if it contains just a null

stalement in its body.

kK The 15 executed at least once always before it evaluates
the test expression.

g =

statement exits from some deeply nested structure at
once.

i function forces exit from a program.

k) staternent forces immediate exit from any loop.

b The statement is used 1o skip some statements within a
loop and start next iteration.

3.11 SUMMING UP

There are three ways for taking decisions in a program. First way is to use the if else
staternent, second way is 10 use the conditional operators and third way is to use the
switch stalement. The default scope of the if statement 1s only the next staiement. So,
lo execuie more than one statement they must be written in a pair of braces.

An if block need not always be associated with an else block. However, an else
block is always associated with an if statement.

Loop structures are used to execute a statement/block of statements repeatedily a
number of times. Three types of loops are used in C: for, while and do while. In
both for and wihile loop, the condition is checked before each iteration of the loop.
But in case of de while loop, the condition is checked after each iteration of the loop.
The gote staternent transfers control to a label. The break statement terminates the
execution of the nearest enclosing de, for, while or switch statement in which it
Appears.

The continue statement passes control to the next iteration of the nearest enclosing
do. for or while statement in which it appears bypassing any remaining statements in
the do, for or whille stalement body.

3.11 ANSWERS TO CHECK YOUR PROGRESS

1. The if stalemeni is a control statemeni that tests a particular condition. Whenever,
the evaluated condition comes out to be true, then that action or the set of actions

123

Space for learners

notes

Space for learners
noles

are carried out. Whereas, if else statement is used to execute a statement block
or a single statement depending on the value of a condition. If the condition
evaluates to true, then the statement(s) inside the if block will be executed,
otherwise, the statement(s) inside the else block will be executed.

An if statement may have another if statement in the true condition block and
false condition block. This compound statement is called nested if statement.

205

a) False
b) False
c) False
d) False
¢) True

a) False
b) True
¢) True
d) True
e) True
f) False
g) False
h) False
i) False
j) Troe
k) Tre
D True
m) True
n Te
o) Tne
p) True
q) Tne
r} Tre

a) for

b) 3

c) while(1)
d .

124

¢) continue

)

test

g) while or for
h) dowhile

D
i)

goto
exit()

k) break

b

continge

3.13

POSSIBLE QUESTIONS

Short answer type questions:

ORI

What is the effect of absence of break in switch case statement? What is the
purpose of default?

What is the similarity and difference between break and continue statement?
What is the function of break statement in a loop?

Why the use of goto statement should generally be avoided in a C program?
Differentiate between while and do while loop.

Differentiate between break and exit ().

Long answer type questions:

B oW

Explain the various if structures with suitable examples.

Differentiate between if else and switch structures with an example.

What is pested if statement? Explain with an example.

Write a program in C to display the smallest of three numbers entered by the
user,

5. Explain the loop control siructures used in C with examples.

10.

1.
12.

13.

Write a program in C to convert a binary number into & decimal number.

. Write a program in C to convert adecimal number into its equivalent binary

number.
Write a program o check whether a number is palindrome or not.
Write a program to display the multiplication table of 5.

Write a program to display all the numbers divisible by 7 between 20 and
200.

Write a program 1o generate the first 100 positive integers divisible by 5.
Write a program in C to evaluate the series:

Sum=]+12+13+.... + I/
Write a program in C to display the prime numbers between 10 and 100.

125

Space for learners
noles

Space for learners
noles

14. Write a program in C to display the factorial of all the numbers between | and
10.
15. Write a program in C to evaluate the series:
1+ 13 +1/5+....... +n

3.14 FURTHER READINGS

1. Kanetkar, Yashavant P. Lef us C. BPB publications, 2016.
2. E Balagurusamy .Programming in ANSI C. Tata McGraw-Hill publications,

20086.

126

UNIT4 ARRAYSAND STRINGS Space for learners

mefes

CONTENTS

4.1 Introduction

42 Objectives

4.3 Definitionof Amay

4.4 Typesof Amray and Declaration
4.4.1 OneDimensional array
442 Multi-Dimensional array

4.5 Operations on One Dimensional Armay
4.5.1 Initialization
4.5.2 Read and Access of Array Elements
4.5.3 Searching and Sorting

4.6 Operations on Two Dimensional Array
4.6.1 Initialization
4.6.2 Readand Access Array Elements

4.7 Definition of String

4.8 Input and Display a String

4.9 Opemtions on Sirngs

4.10 Array of Strings

4.11 String Library Functions

4.12 Summing Up

4.13 Possible Questions

4.14 References and Suggested Readings

4.1 INTRODUCTION

In unit 2, we have learnt how to declare a variable and input a value. Now
sometime ina C program, more than one similar type of data is required as inputs. In
such cases, it may happen that the number of required input data is very large or it is
dependent on the user input. So in such cases, it is not possible to declare different
variables for all the required input data. Here we can use the concept of Array in C

PrOgramiming.

127

| Space for learners | 4.2 OBJECTIVE

nofes

After going through this unit student will able to:

What are Arrays?

Different types of Amrays.

How to declare and initialize an Array?

Different operations on one dimensional array and two dimensional array.
What is a string?

How to input and display a string?

Different operations on strings.

What is array of strings?

Different library functions on strings.

4.3 DEFINITION OF ARRAY

An armay is a collection of homogeneous pieces of data that are all identical in
type and stored in consecutive memory locations. For example in Fig4.1, A is an
integer array storing 10 integer numbers.

o 1 2 3 4 5 6 71 8 9
A [23 Tas 31[&1]312 123 |89 [90 | 22

Fig.4.1: Example of integer array storing 10 integers

Now let us assume that the base address of A is 5012. Base address of an
array is the memory address of the first element in the array. So here 5012 is the
memory address of 23, Now according to the definition of array, the memory address
of the second element of A is 5014 as the memory size of int type variable is 2 bytes.
In this way, the memory address of the third and fourth element of A is 5016 and
5018 respectively as the array elements are stored in consecutive memory locations.

4.4 TYPESOFARRAYAND DECLARATION

There are two types of array available in C programming that are explained
as follows:

4.4.1 One dimensional array:

In one dimensional array, data is stored row or column wise and are hold in consecntive
memory locations.,
The declaration syntax of one dimensional array is

128

Datatype arraynm [N];

Here datatype specifies type of the data to be stored in the array and arraynm
is the name of the array. [N | specifies that arraynm is a one dimensional array and it
can store maximum N number of elements.

Forexample: int arr] 30]

Here, int specifies that the array will store integer type of data and arr is the

name of the array. The array can store maximum 30 number of integer type data.

4.4.2 Multi-dimensional array

In multi-dimensional array, data is held both row and column wise.

The declaration syntax of multi dimensional or N dimensional aray is

Datatype arraynm [size1][size2][size3)........[sizeN]

For example, declartion of a 2 dimensional array is

float arrtwo [30][20] ; ;

Here [30][20] means arrtwo is a 2 dimensional array and it can store masimurm
30=20 = 600 numbers of float type data. A two dimensional array also can be called
s a matrix.

Again example of declaring a three dimensional array is

int arrthree] 10]{20)[10];

Here, arrthree is a three dimensional array which can store maximum
10X20X10 = 2000 number of integer type data.

4.5 OPERATIONS ON ONE DIMENSIONALARRAY

There are different operations that can be performed on one dimensional arrys
as explained in the following sub-sections.

4.5.1 Initialization
A one dimensional armay can be initialized by using the following statements.

intarr1[5]={4,7,8,23,56};

intmz{-|={21?1 1 \g};

chargr3[]={'A’, ‘H’, T, ‘B'};

By initializing a one dimensional array, we can store some initial valuesas
array elements into the array at compile time. From the above statements, the array

129

Space for learners

Space for learners

noles

arr| is initialized with the values 4 , 7,8 , 23 , 56 as first, second, third, fourth and fifth
element of arrl respectively. Now if an array is not initialized then it contains garbage
values because by default the storage class of array is auto. So if the storage class of
an array is declared to be static then all the array elements will be initialized to zero.

4.5.2 Read and Access of Array Elements

We have to leam how to access individual element in a one dimensional array
and how array elements can be read from standard input device. Accessing of array
elements can be performed with the number in the brackets (for example: [4]) following
the array name. This number is called as subscript. This number specifies the element’s
position in the array. In C programming, all the array elements are numbered, starting
with subscript value 0. So an array of size 20 has subscript values starting from 0 to
19, So if we want to access the 5* element of an array ‘arr’ then we can use “arr{4]
- Now we can read and display the 5 element of an integer array “arr’ with the help

of the following programming stalements.

int arrf30];

scanfi “%d" , &arr{4]) ; /* an int type data is read from the standard input device
into the 5* position of arr */

printf(* %d", arr{4]); /* the 5* element of arr is displayed in the standard output
device*/

Now from fig. 4.1, A[0] will refer to the first element of A which is 23 and in
this way A[9] will refer to the 10* element of A which is 22.

Here we have an important point that is what happens when the subscript
value used in the time of reading an array element is greater than or equial to the size of
the array. In such cases, for C programming, data will be entered into the memory
space outside the memory space allocated for the array. Sometimes this entered data
will replace other important data outside memory space of the array and in some
cases the system may stop responding. So there should be a conditional statement in
our C programs to check that the subscript value never exceed the array size in the
time of reading array elements.

STOP TO CONSIDER:
Direct access or random access of array elements is possible because the armay

Now, a C program to input and display n elements in an integer array is given below.
include <stdio.h>

#include <conio.h>

void main()

t

130

1_:1[:_ut{]ﬂ]; - »
inti,n; Space mﬁ:" -
clrser();

printf(*\nHow many numbers you want to enter{maximum 30)=""),

scanfi“%d".&n);

ifl n>30)
{

printf{*n Your entered quantity of numbers exceeds the size
of the armay™);
}
else
{
for(i=0;i<n;i++)
{
printf{*\nEnter the %adth number =", i+1);
scanf{"%%d”, &art{i]);
H
for(i=0;i<n;i++)
{
printfi*“nThe %6dth number in the array is=%d", i1 , arti]);

getch();

4.5.3 Searching and Sorting

Mow searching a particular element in an array is another important operation
performed on arrays. This can be performed by comparison operation between the
element 1o be searched and elements available in the array. Two fundamenial searching
algorithms are linear search and binary search.

Arranging array elements in ascending or descending order in an array is
called the sorting operation. There are different algorithms available for sorting
operation. For example: Babble sort, Selection sort, Insertion sort etc.

A C program to search an element in an integer array using linear search
technique and display the subscript value where the element is present in the array is
givenas follows,

1M

Space for learners

Hinclude <stdio >
#include <conio. h>
void main()
{
int arr{30];
inti,n,sno, flag=10;
clrser();
printf{*‘nHow many numbers you want 10 enter{maximum 30) ="},
scanf{“%d”, &n);
iffl n=30)
i
printf{*\nYour entered quantity of numbers exceeds the size of
the array™);

else
for(i=0;i<n;i++)

{
printf{*‘\nEnter the % dth number=", i+1);

scanf{" %ed”, &art{i]);
H
printf{*n Enter the number to be searched in the array =");
scanf{"%ed”, &sno);
for(i=0;i<n;i++)
{
iffsno == arr{i])
{
printf{*\n%d is present in the array in the array™,
o),
printf{*\n Subscript value of the scarched
clement is =%d", i)
flag=1;
break;
)
h
if(flag ==10)

132

printfl*\n%d is not present in the array™ sno), Spmia ford o
)
getch();

Example 4.1: Write a C program to search a specific data in a one dimensional array
using binary scarch algorithm.
#include <stdio.h>
Hinclude <conio.h>
void main()
{
intarc{50] ,1,n, start, mid , end , src_data,
clrser();
printf{*“n Enter the total number of data in the array:™);
scanf{”%ed”, &n);
ifin <= 50)
{
prntf{*n Enter data into the array:™);
for(i=0;i<n;i++)
{
printf{*\n Enter %dth data:", i+1);
scanf{*%d", &andi]); I
} .
printf{*n Enter the data to be searched:™);
scanf{“%ed”, &src_data);

printf{*“\n The array data are:\n™);
for(i=0;i<n,;itt)
printf*¢%%d” ardi]);

start = 0;
end=n-1;
while(start <= end)
{

mid = (start + end)/2;

iffarr{mid] = =src_dala)

{

printf{*n %od is available in the array™, src_data);

133

Space for learners
notes

printf*n Subscript value of the searched element is =%d",
mid)
break;
)

else iflarr{mid] <src_data)
start = mud+1 ;

else
end =mid-1;

if{start > end)
printfi*4n %od is not available in the
array”,src_data);

-

-

printf{(*\n The total number of data exceed the size of
the armay”);

H

getch();

Example 4.2: Write a C program to find out the minimum and the maximum of the
numbers present in an inleger array.
finclude<stdio h>
#include<conio.h>
vioid main()
I
intarf[30]; //ar is aone dimensional integer array with size 30
inti,n, min, max;
clrser();

printf(*nHow many numbers you want to enter(maximum 30y="),
scanf{*%d", &n);
ifin > 30)
{
printf{*in Your entered quantity of numbers exceeds the size
of the array ™),

124

else
{
for(i=0;i<n:i++)
{
printf{“\nEnter the %dth number =", i+1);
scant{“Yod” &arr{i]);
}
min= arr{0];
max = arr[0];

for{i=1:i<n;i++)
{

if{arr[i] <min)
min =arr{i];
iffarr{i] = max)
max = arr|i];
H
printf{*\nThe minimum of the numbers present in the
array is = %d”,min);
printf{*4n The maximum of the numbers present in the array is
=%d" max);

]
getch();
H

Example 4.3:

Write a C program to find out the summation of all the numbers present in an integer
amay.

#include <stdio h>

fiinclude <conio.h>

void main()

i
int arr[30];
inti,n,sumarr =0;

¢clrser();

135

Space for learners

noles

Space for learners |

printf*‘\nHow many numbers you want to enter{maximum 30) =");
scanfl™%ed”™, &n);

ifin > 30)

{
printf{*4n Your entered quantity of numbers exceeds the size of the

array’);

else

for(i=0;i<n;i++)

{
printf{*‘nEnter the %dth number =", i+1};
scanf{™%ed”, &arr{i]),

sumarr = sumarr + arri];

printf{*4nThe summation of the numbers present in the
array is=%ed” sumarr);
!
getch();
}

Example 4.4: Write a C program to sort some integer numbers stored in a one
dimensional ammay using selection sort algorithm.
#include <stdio.h>
#include <conio.h>
void main()
{
intarr{50] ,1,j ,n, index , min;
clrser();
printf{*4n Enter the total number of data in the array:™);
scanfi*%%ed”, &n);
ifin <=50)
{
printf{*4n Enter data into the array:™);
for(i=0:i<n:i++)

136

Space for learners
printfi*n Enter %dth data:”, r+1); moles

scanf{*%d”, &arr{i]);
}
printf{*4n Befiore sorting the array data are:'\n”);
for(i=0;i<n;i++)

printf{\%d”, andi]);

for(i=0:i<n-1;i++)
i a
index =i;

min =afi};

for(j = i+1 ; j <=n-1 ; j++)

{
if (min>afj])
i
min=afj};
index=};
H
i
afindex] = a[i]:
a[i]=min;
}
printf{*\n After sorting the array data are:\n");
for(i=0;i<n;i++)
printfl“t%d" ar{i])
}
clse
{
printf{*n The total number of data exceed the size of the
amay");
}
getch();
}

137

' M N Example 4.5: Write a C program to sort some integer numbers stored in a one
' f;;’"’" dimensional array using bubble sort algorithm
#include <sudio.h>
#include <conio.h>
void main{)
{
int arr[50] ,1,] , n, temp;
clrser();
‘ printii”“n Enter the total number of data in the array:™);
scanf{"%d", &n); .
if{n <= 50)
{
printf{*n Enter data into the array:");
for(i=0:i<n;i++)
{
printf{*\n Enter %dth data:", i+1):
scanf{*%ed”, &arr{i]);
}

printf{*“in Before sorting the array data are:\n™);
for(i=0;i<n;i++)
printf{*\t%d”, arrfi]);

for(i=0;i<n-1; i++)
t
for(j =0 j <p-i-1 ; j++)
{
if (are(j] > arrfj + 17)
{
temp = arrj];
arr|j] = arrj + 1];
arr|j + 1] = temp;
!

}
printf{*\n Afier sorting the array data are:\n™);
for(i=0:1<n;i+)
printf{*\t%ed”, arr{i]);

138

else

Space for learners
l notes
printf{*“n The total number of data exceed the size of the
amay),
!
getch();
H

Example 4.6: Write a C program 1o sort some integer numbers stored in a one
dimensional array using Insertion sort algorithm

#include <stdio.h>
#include <comio h>
{
intarr{50],i,j.n, key;
clrscr(),
printf{*“n Enter the total number of data in the amray:");
scanf{"%d", &n);
if (n <=50)
{
printf{*n Enter data into the array:™);
for(i=0;i<n;i+t)
{
printf{*n Enter %6cdth data:™, i+1);
scanf{* %ed” Larr{i]);
}

printf{*“n Before sorting the array data are:\n”);
for(i=0;i<n;i++)

printfl™\%ed”, arr{i]);

for(i=1;i<m;i++)
i
key =afi];
j=i-1;
while (j >=0 && a[j] > key)
{
alj+1]=all;
-

139

Space for learners

i

alj+1 J=key:

;

printf{*n After sorting the array data are:\n”);
for(i=0:1i<n;i+)

printf{*%ed”, an{i]);
}
clse
{
printf{*in The total number of data exceed the size of the
armay”);
i
getchi);

STOP TOCONSIDER:
Let us declare an one dimensional array as int Arr[20]. Then Arr and &Arr{0]

will provide the base address of the array.

4.6 OPERATIONS ON TWO DIMENSIONALARRAYS

4.6.1 Initialization

Two dimensional arrays can be initialized as follows:
int ammtwol[4][31={
{4,8,9),
{7,9,21},
(1,8,19},
(71, 6,2}
L
int artwo2(4](3]=(4,8,9,7.9,21,1,8,19,71,6,2};
int armtwo3[}[3]=(4,8.9,7,9,21,1,8,19,71,6,2);
Fig. 4.2: illustrates this process.
Here, three ways of initializing a two dimensional armay are shown above. In
case of initializing two dimensional arrays, it is necessary to mention the second

| dimensionof the armay, otherwise it will not work in C programming. So, two dimensional

array initializations as shown below will not work in C programming.

140

int amwo[)[]1={4,8,9,7,9,21,1,8,19,71,6,2}; :
Space for learners

int arrwo[4)[]={4,8,9,7,9,21,1,8,19,71,6,2); fop
0 1 2
o [4 [s 9
HERIERE
2 [1 18 |
S ERE 2 |

Fig.42: Diagrammatic representation of the array arrtwol declared above

4.6.2 Read and Access Array Elements

We need two subscript values to access a specific cell of atwo dimensional
array, Here first subscript value will represent the row index and the second subscript
value will represent the column index of the specific cell of atwo dimensional array.
For example, consider the two dimensional array arrtwol declared above whose
diagrammatic representation is given in fig. 4.2. Here amrtwo [0](0] will refer to the
first element in the array with row index 0 and column index 0 which is 4. Again
arrtwo 1 [3][0] will refer 1o 71.

So arrtwol [i][j] will give the array element withi® row number and j*
column number of the array arrtwol.

Now to display the array element with row number 3 and column number 2
of array armtwo] on the standard output device, the following programming statement
in C can be used:

printf(**%ed” armtwol[3][2]);

So the output of the statement will be 2.

Again to read a new array clement from the standard input device into the |
cell with row number 3 and column number 2 of array arrtwol, the following
programming statement can be used.

scanf{*%d”, &arrtwol [3][2])

 So result of this statement will be a new data from standard input device will

replace the existing array element of arrtwol with row number 3 and column number
2 as arrtwol is initialized.

Example 4.7: Write a C program to find out the summation of all the numbers of a
matrix with integer values.

#include <sidio b=

#include <conio h>

void main()

{

141

Space for learmers
notes

inti,j,row no,col no, matrix[20][20] sum = 0;

clrsor();

printf{*\n Please enter the number of rows =");
scanf{*%ed”, &row _no);

printf{*n Please enter the number of columns =");
scanf{"%d", &col_no);

printi{“\nPlease enter the maitrix:™);

for(i=0;i<row_no;it+t)
{
for (j=0;j <col_no ; j++)
{
printf{*\nPlease enter the (%d,%d) th
data=",i,j);
scanf{"%ed™, &matrix[i][j 1)

H
for(i=0;i<row_no;it++)

{

for (j=0;j <col_no ; j++)

{
sum = suny+ matrix[i][j];
}
J
printf{*n The required summation is = %ed”, sum);
getch();

!

| Example 4.8: Write a C program to find out the summation of all the diagonal elements

of a symmetric matrix with integer values.
#finclude <stdio h>

#include <conio h>

void maini)

i

inti,j,row no,col_no, matrix[20][20] ,sum = 0;

clrser();

142

printf{*in Please enter the number of rows ="');
scanf{“%d", &row_no);

printf{*“n Please enter the number of columns =*);
scanfi“%ed”, &col no);

iffrow_no !'=col_no)
{
printi{*\n Wrong input. Symmetric matrix required here™);
)
else

{
printf{*“nPlease enter the matrix:");

for(i=0;i<row_no;i++)

{
for (j =0; j <col_no; j++)
{

printf{*\nPlease enter the (%d,%d)
thdata=",i,j);

scanf{*“%ed™, &matrix[i]{i]);

H
for(i=0;i<row_no;i++)

{
for (=0; j < col_no ; j++)
{
ifi==})
{
sum = sum+ matrix(i[i)
|
)
1

printf{*4n The required summation is = %d", sum);
H
getch():

143

Space for learners
nofes

Space for learners
noles

| Example 4.9: Write a C program io add two matrix contzining integer data

#include <stdio h>

#include <conio b=

void main()

i
inti,j,row_no,col_no;
int matrix 1[20][20] , matrix2{20][20] , sum_matrix[20][20];
clrscr();

printf{*in Please enter the number of rows =");
scanf{™%ed”, &row_no);

printf{*\n Please enter the number of columns =");
scanf{"%ed”, &col_no);

printf{“nPlease enter the first matrix:"),

for(i=0;i<row_no;i++)

{
for (j =0;j <col_no; j++)
{

printf{*\nPlease enter the
(%d,%d) th data of matrix1=",i,j);
scanf{"%ed”, &matrix 1 [1]{]%

}
printf{*“nPlease enter the second matrix:");
for(i=0;i<row_no;i++)
i
for(j =0;j <col_no; j++)
{

printf(*\nPlease enter the
(%d,%d) th data of matrix2=",i,j)

scanf{™%ed”, &matrix2[i](i]);

for(i=0;i<row_no;i++)

{

144

for(j=0;j<col_no;j++)

{
sum_matrix[i][j] = matrx 1 [i}{j] +
matr2i|j];
)
}
printf{**n The first matrix is:\n"");

for(i=0;i<row _no;i++)

{ for (j =0;j <col_no ; j++)
{
printf{*\%4d” matrix 1 [i){j]);
:r‘ml:li“'n"};
j
printf{*n The second matrix is:\n");

for(i=0;i<row no;i++)

{
for(j =0;j <col_no ; j++)
{

printfl*t%ed” matrix2[{][]
}
panti{”\n");
i

printf{™n The resultant matrix after summation is’\n™);

for(i=0;i<row_no;i++)
{
for (j=0;j <col_no ;j++)

{
printf{*4%d”, sum_matrix[i][i]);

145

—_——

Space for learners

Space for learners
moles

]

printf{n”);
}
getch();

}

Example 4.10: Write a C program to multiply two matrix containing integer data
#include <stdio.h>
Hinclude <conio h>
void main()
{
inti,j.k,r,2,cl ,€2, sum=0;
int matrix1[20][20] , matrix2[20][20) , matrix_mult[20][20];

printf(*\nPlease enter the number of rows of the first matrix="");
scanf{*%d", &rl);

printf{"“nPlease enter the number of columns of the first matrix =");
scanf{*%d", &cl);

printf{*\nPleasc enter the number of rows of the second matrix ="");

scanf{“%d", &r2);

printf{*nPlease enter the number of columns of the second matrix
%

scanf{*“%d", &c2);

if (cl '=12)
printf(*\n Matrix multiplication for these dimensions of
matrices isnot possible™);

else

{
printf{*\nPlease enter the first matrix:");

for (i=03i<rl;i++)

]

for(j=0;j<cl ;)
{

printf{“nPlease enter the
(%d,%d) th data of matrix1 ="*,i,j) Space for learners

Holes
scanf{*%d", &matrix 1 [i](j]):

printf{*“\nPlease enter the second matrix:");

for(i=0;i<r2;i++)

{
for(j=0;j<c2;j++)
{

printf{“\nPlease enter the (Yed,%d)
th data of matrix2 =*,i,j);

scanf{**%d”, &matrix2[i][j])%

for (i=0yi<rl; it+t)
{
for (j = 0;) <c2; j++)
{
for (k =0; k <r2; k++)
{
sum = sum -+ matrix[i]{k] *
matrix2[k]G:

matrix_mult[i][j] = sum;

sum = {;

printf{*n The first matrix is:\n"),

for(i=0:i<rl;i++)

{

147

Space for learners
notes

for(j=0;j<ecl ;j++)

{
prntf{**4%ed” matrix 1 [{1[]):
}
S
]
printf(*n The second matrix is:\n");
ﬁ;-r{i= 0:i<2 ;i)
{
for(j=0;j<c2;j+t)
{
printf{*\%%d”, matrd2{i] (]
H
pentf{*4n");
H
printf{*\n The resultant matrix after multiplication is:\n");
for(i=0;i<rl ;1++)
{
for(j=0;j<e2;j+)
{
printf{*t%ed”, matrix_multfi][i]);
H
printfl a”);
}_ 2
'
getch();
1
1 STOP TO CONSIDER:

Let us declare a two dimensional array as int Am2 [20](30]. Then An2, Amr2[0]
and &Arr2[0][0] will provide the base address of the array.

148

CHECK YOUR PROGRESS Space for learners

1. Multiple choices
(a) InC programming, the subscript value of an array is starting fromh____.
® 0 '
@ 1
() Compiler dependent
(iv) None of the above
(b) intarr{20; a
The meaning of the above statementis .
(1) arrisainteger vanable
(i) arrisainteger array capable of storing |9 integer numbers
(iii) arr is an array capable of storing 20 data
(i) arr is an integer array capable of storing 20 integer numbers
(¢) intarr{5] = {5,2,0,1,4};
arr{3] =arr[1] +arr{4];
for(i=0;i<5;i++)
printf{* %d”, arr{i]);
The output of the above statements is
M 52014
(i) 52044
@s51064
(ivi52064
(d) If arr is a character array and the memory address of arr{0] is 203 then
memory address of arr{3]is ___ .
iy 204
(@) 205
() 206
(iv) None of the above
(e) 1fyoudon'tinitialize an array what will be the elements set to?
Mo
(1) anundetermined value
(i) a floating point number
(iv) the character constant 0"

(fi What will happen if you try to put so many values info an array when you
initialize it that the size of the array is exceeded? '

(i) Nothing
(i) possible sysiem malfunction
149

(iii) Error message
(iv) Other data may be overwritten

(2) What will happen if you put too few elements in an array when you initialize
it?
(i) Nothing
(ii) possible system malfunction
(iii) Error message
(iv) Unused spaces will be filled with 0's or garbage.

2. State whether true or false

(a) Todeclare an integer array we have to write int arr = size(20);

(b) Array can be used to store different types of data.

(c) InC programming ,the subscript value of an array is starting from 0.

(d) The subscript value of the last element of an array of size 10is 10in C
POgramming.

(¢) InC programming, an array cannot be initialized.

Space for learners

notes

4.7 DEFINITION OF STRING

String is a collection of some characters stored in a one dimensional character
array. A string is always terminated by “\0" which is called NULL character. The
ASCII value of “\0” is zero. For example in fig.4.3, A is a character array with ammay
size 10 and it stores the string *“Welcome”.

0 2 3 4 5 6 7 i 9

v W[ETi [eTe Lol

Fig.4.3: Example of a string

STOP TO CONSIDER:

The maximum length of any string that will be siored in a character armay, stm{N]
is N-1 as string must be terminated by the NULL(*\0") character.

4.8 INPUTAND DISPLAY ASTRING

Al first we require a character array to input a string. Now we can use different
library functions like scanf(), gets(), getchar() to input a string. For example:
char str{40];
(a) scanfl) can be used as:
scanf{*“%es", str);

150

(b) gets() can be used as:
gets(str);
(c) getchar() can be used as:
inti=0;
charch;
while{(ch = getchar()) !="n")
I
strfi] = ch;
H-+;
)
strfi} = \0';

Here str is the character array where we have input a string using scanf(),
gets() and getchar(). But scanf{) is not capable to input a multi word string, so in case
of multi word string we can use gets() or getchar(). geichar() is a input function which
can be used to input a character. So getchar() can be used to input all the characters
of a string one by one with the help of a loop control and at the end , the NULL
character(\0) is entered.

Now to display a string we can use different library function like printf{),
puts() . For example:

(a) printf{) can be used as:

printf{*%6s”, str);

(b) puts() can be used as:

puts{str};

STOP TO CONSIDER:

The character display function, putchar() canalso be used to display strings. All
the characters of a string can be displayed by using putchar() inside a loop
control.

4.9 OPERATIONS ONSTRINGS

There are different operations performed on strings that are discussed as
follows.

(a) A siring is initialized as:
char str{ | =*Welcome™;
Or
charstr{ = {'W",'¢’,)I','¢’,0",'m" e’ \0';

151

Space for learners

Aores

Space for learners

noles

Here in the first declaration, *\0" is not necessary. C compiler inserts the NULL
character (\0) automatically.
(b) Length of a string can be estimated by just finding the subscript value of the
NULL character (\0) in the character array where the string is stored. So searching
operation is performed for the NULL character (\0) in the string and the subscript
value of the NULL character (\0) is the required length of the string.

A C program 1o find out the length of & string is given below.
#include <stdio.h>
#include <conio.h>
{

char ch, sir 30];

int slen=10

clrser();

printf{*4nEnter a string =");

gets(str),

while(strslen]! =07)

{

slent+;

}

printf{*n The length of the string is =%ed™ slen);

getch();,

(a) Toconcatenate one string at the end of another string, we have to find out the
subscript value of the NULL character that is stored in the string where concatenation
will be performed. Then we have 1o assign each character of the string that is to be
concatenated to the other string in consecutive position starting from the estimated
subscripl value,

A C program to concatenate a string at the end of an another string is given
below

#include<stdio h>
finclude<conio.h>
void main)

{

char str1[30], str2[30];
intslen=0,i=0;
clrser();

printf{*nEnter the first stong =");
152

gets(strl);
printf{ \nEnter the second string =");
gets(str2),
while(str] [slen]! =*\0")
{
slen++;
H
while(str2[i]! = 0"
{
str1[slen] = str2[i};
slent++;
i+
}
strl[slen] =*\0";
puts(str]});
getch();

(c) Tocopy astring to an another string we have to do just assign each character

of the first string to the second string in consecutive subscript value positions starting

from O 1o the subscript value where the NULL character(\0) is stored in the first
string,

i AC program 1o copy one string to another string is given below.

#inchude <stdioh>

#include <conio_h>

void main()
{
char strl[30), str2[30);
inti=0;
clrser();
printf{*\nEnter the first string =");
gets(strl);
printfi-\nEnter the second string =");
gets(str2);
while(str2[i]! = 0")

{

Space for learners
nales

Space for learners

noles

strl[i] = ste2fi];
b
)
strifi]=\0’;
printfi\nAfler copy the first string is =");
puts(strl);
getch();

Example 4.11:

Write a C program to search and find out the number of occurrences of a specific
character in a string,

ffinclude <stdioh=

#include <conio.h>

void mam()
{
char str[30] ;
charch;
inti=0, chcount=0;
clrser():
printf{*“nEnier a stnng =") ;
gets(str) ;
printf{*nEnter the character 1o be searched=")
scanf{*%ec”, &ch) ;

while(str{i] !="*\0")
{
iff str{i] == tolower{ch) || str{i] == toupper(ch))
chcount++;
i++;

]
ifichcount==10)
printf{*\n the character * %« is not present in the string”.ch) : else
printf{*nThe character is present in the string %ed no. of times™,chcount);
getch();
}

Example 4.12:

Write a C program to count the number of vowels present in a string. | wﬁ:"”‘”
#include <stdio.h>
#include <conio h>
void main()
{
char str 30]
inti=0,veount = ();
clrser();
printf{*\nEnter a string =");
gets(str);
while(str{i] !=“\0")
i
switch(strfi])
i
case‘a'’:
case ‘A':
case ‘e’
case ‘E":
case ‘|’
case ‘o’;
case "0":
casc ‘u”;
case "L veouni++,
’ i
b
}

if{ veount =0)
printf{*n No vowel present in the string™);
eclse

printf{*\nThe number of vowel present in the string is
=%ed™,vcount),

getch(),

155

Space for learners
notes

4.10 ARRAY ONSTRINGS

Till now, we have leamt to read and display single strings by using one
dimensional character armays. But to read multiple strings, we require fwo dimensional
character arrays where the first subscript value of the ammays indicates the total number
of strings and the second subscript value indicate the maximum length of each strings.
This is also called as array of strings. For example, let us consider a two dimensional
character array Multi_Stm|[20][40]. Now Multi_Strn[20}[40] can be used to read
20 strings where maximum length of each string can be 39.

A C program is shown below where N number of employees’ names is read
and displayed.

#include <stdio.h>
#include <conio.h>
void main()

{

char Emp_names{50][100];
int N, i;
clrser();
printf{*n Enter the total number of names ="},
scanf{*%d™ &N);
ifiN = 50)
{
printf{*4n Maximum 50 names is possible”);

else

printf{““n Enter names of %od nurnber of employees::”, N);
for(i=0 i <N;i+)

printf{*4n Enter %dth name =", i+1};
gets(Emp_names|i]);
i
printf{*n The list of employee names is:\n");,
for(i=0;1<N;it+¥)
{
puts(Emp_names{i])
peintf{*“n™);

geich(),

In the above program, Emp_names[50][100] is declared as two dimensional
character amay to store maximum 50 number of employee names. Here Emp_namiesfi] Sp“’{: Shan——
point to the i* employee name. =

4.11 STRING LIBRARY FUNCTIONS

Some of useful library functions on strings and their functonalities are given in
the following table (TABLE 4.1).
TABLE 4.1: TABLE FOR STRING LIBRARY FUNCTIONS AND THEIR

FUNCTIONALITIES

String Library Function | Functionality

strier{stm) " | Retumsthe length of the string stm

strepy(strn|,stm2) "| Copies the string strn2 to the string stm]

stmepy(stml stm2,N) Copies first N characters of the string stm2 to the
siring stm1

streat(stm | strm2) Concatenate the string strn2 at the end of the string
strm

stremp(stm | stm2) | Compares the two strings stm| and stm2. Ifit retums

(then stm] and stm2 are equal .If it retums a positive
value then st is greater than strn2. Ifit retums a
negative value then stm2 is greater than the strl.

| strnemp(stm1,stm2N) Compares first n characters of two strings st and

strn2

sh'uhpu{sﬂnl,sma‘.; o Cﬂnmm:s two strings strnl am]s.tmzmlfmmr_cﬁ
20 ome

striwn(stm) | Converts the string stm to lowercase

strupr(stmy} Converts the string stm to uppercase T

sn'dup[stm} Returns a pointer 1o a string that is duplicate of the |
string stm

strehn(stmychr) Returns a pointer 1o the first occurrence of the

character chr in the string stm. I chr is not available
in stm then it retums NULL.

strrchin{strn,chr) Retumns a poinier the last occurrence of the character

I chrin the string stn. If chr is not available in stm then
it returns NULL.

strstr(stml ,5tm2) Returns a pointer to the first occurrence of a string

strn2 in the string strn 1. If strn2 is not available in
st | then it retums NULL.

strrev(stm) | Reverses the string stm]

strset(strmchr) Sets all characters of the string st to the character
chr

strnseti{strn,chr,N) Sets first N characters of the string strn to the
character chr

157

Space for learners

noles

STOP TO CONSIDER:
Itis necessary to include the header file *string.h” to use mentioned string library
functions.,

| B

Now consider the following programming stalements.
char stm1[] = “Gauhati University”,
char stm2[] =“Welcome to IDOL";
intslen;
slen = strlen(stm1);
printf{4n Length of the string stored instm1 is=%d" sken);
slen= strien(stm2});
printf{*\n Length of the string stored in stm2 is = %d"slen);
strepy(stml stm2);
printf{*in String stored in stml is =");
puts(stml};
printf{*n String stored in stm2 is=");
puts(stm2});
printf{*n %d”, stremp(stm 1 stm2));

Now the output of the above programiming statements is:
Length of the string stored in strn1 is =18
Length of the string stored in stm2 is = 15
String stored in stm| is = Welcome to IDOL
String stored in stm?2 is = Welcome to IDOL
0

The first line of the output gives the length of the string “Gauhati University™
stored in the character array stm|1. The second line of the output gives the length of
the string “Welcome to IDOL” stored in the character array strm2. To estimate these
lengths, the string library function strien() is used.

In the above programming statements, string library function strepy() is used
to copy the string stored in strm2 to the string instml. Asa result, string “Welcome to
IDOL" replaces the string “Gauhati University” in strn 1, Due to this, the third line of
the output displays the string stored in stm1 which is“Welcome to IDOL". The fourth
line of the output displays the string stored in strm2 which is also “Welcome to IDOL".

In the above programming stalements, string library function stremp() is also
used to compare the strings stored in stm and stm2. Now at this moment, both stm|
and strn? store the same string. So stremp(stm 1 strn2) returns 0 and as a result the
fifth line of the output provide 0.

STOP TO CONSIDER:
[n case of multi word strings, the blank spaces between two words are also
considered as characters in estimation of lengths of the strings. For example,
the length of the string “Gauhati University™ is 18.

Space for learners

Example 4.13: Write a C program to read N number of employee names and perform
sorting operation using Babble sort technique to arrange these names in alphabetical
order. Use string library functions as required in the program.
#inchude <conio.h>
#include <string h>
void main()
{
char Emp_names{50][100], temp[100];
int N, i, j;
clrser();
printf{*\n Enter the total number of names = =),
scanf{"Yod” &N);

ifiN > 50)

{
printf{*n Maximum 50 names is possible™),

——

printf{*\n Enter names of %d number of employees::", N);
fori=0;i<N;it+H)
{
printf{*n Enter Yodth name = “i+1);
gets(Emp_names[i]);
}
printf{*n The list of employee names before sorting is:\n™);
for(i=0;1<N;i++)
d
puts(Emp_names[i]);
printf{*n");

}
for(i=0;i<N-1;i++)
{

159

Space for learners

for(j =0) <N-1-i;j++)

{
iffstremp(Emp_names{j]
JEmp_names[j+1])>0)
{

strepy{lemp ,
Emp_names(j]);
strepy(Emp_names(j] ,
Emp_namesfj+1]);
strepy(Emp_names{j+1] , temp);

}
i
printf{*4n The list of names after sorting is:'\n");
for(i=0;i<N;itt)
{
puts(Emp_namesfi]);
printf{”a”);

getch();

CHECK YOUR PROGRESS

| 3. Multiple choices .

(a) InC programming, a string is lerminated by
O 0
(T
(iii) A blank
(iv) None of the above
(b) A string is stored ina
(i) Character array
{ii) Inteper array
(i) Both (i) and (ii)
{iv) None of the above
(c) A siring is initialized as
(i) charstl|]="“1DOL",

(ii) charstl="IDOL"; ['
(i) charsti[]= {10’ 0", 'L’ \0'); | o i
(iv) Both (i) and (iii)
(d) charname[20]="Welcome to IDOL" ;
name{7] = “\0";
printf{*“%6s”, name);
The output of the above statements is
(i) Welcome
(i) Welcomet
@) IDOL
(iv) None of the above
(¢) Which one of the following is appropriate for reading a multi word string ?
() pontf{)
() scanf{)
(m) gets()
(iv) Both (ii) and (1)
(T} If stremp(s],s2) retumns -12 then it means
() sl and s2 are equal strings
(i) sl is greater than 52
{in) s2 is greater than s1
(iv) None of the above
(g) charstr{20]="Welcome",
for(int i = strlen(str) -1 ;i>=0;i—)
printf{*%c”, str{i]);
The output of the above statements is
(i) Welcome
(ii) emocleW
(i) Welcom
{iv) Error message from compiler
(h) strepy(sl.s2);
The above statement means
(i) Copies the string 52 to the string s1
(i) Copies the string 51 to the string 52
(i) Copies the first n characters of the string s2 to the string s1
4. State whether true or false
(a) The length of a string is equal to the subscript value of the position where the
NULL character is stored in the character array.
(b) Strings cannot be initinlized.

161

Space for learners
nofes

{c) A string with multiple words cannot be entered by scanf{).
(d) striwr() converts a string to its lower case.
(¢) streat(strl str2) concatenates the string str] at the end of the string str2.

4.12 SUMMING UFP

We have leamt about arrays and strings from this unit. An array isacollection
of similar type of data which are stored in consecutive memory locations. The declaration
of an array has three parts, (a) type of the variable, (b)array name and (c) within
brackets ([]) the size of the array means how many clements can be stored in the
array.

Initinlization of a one dimensional array can be implemented as follows:

int arr{S]={ 12,23,34,45,56};

Three ways of initializing & two dimensional array are given as follows:

> int arrtwo[2][3]={
{2,18,7},
{43,91,1}

)

» in1 armtwe(2][3]={2,18,7,43,91,1};
» int arrtwo[J[3]= {2,18, 7,43,91,1 1§
Insertion and searching operation on an array can be performed with the
name of the array and the subscript values.

String is a collection of some characters stored ina character array. A string is
always terminated by \0 which is called NULL character. In general, gets() and
scanf{) are the two library functions used 1o read a string using standard input device.
But scanf{) is not capable of entering multi word strings. Multiple strings can be
stored using two dimensional character array where the first subscript value of the
array indicates the total number of strings and the second subscript value indicate the
maxirmum length of each strings. This is also referred as armay of stnngs.

Some useful library functions on strings are strlen(), strepy(), strncpy().
strcat(), striwr (), strupr(), stremp(), strncmp(), strempi(), strdup(), strchr(),
strrchr(), strstr(), strrev(), strset(}, stmset(). We have to include the header file
*string.h’ to use these functions.

ANSWER TO CHECK YOUR PROGRESS

1. (ay(i) (M (iv) (e)(iv) () (i) (e) (i)(f)(iv)(g)(iv)
2. (a)false (b)false (c)true (d)false (¢)false

3. (@)(i) M)(i)(e)(iv)(d) (i) (e) (i) (F) (iii) (g) (1) (h)(i)

162

Space for learners

nofes

4. (a)true (b)false (c)true (d) true (¢) false

4.13 POSSIBLE QUESTIONS

1. Definearray. Explain different types of amay available in C programming. Give
suitable examples.
Why concept of amray is very important in programming?

3. Write a C program to construct a new array by merging two sorted integer
array where the clements in the new array will also be sorted.

4. ‘WriteaC program to input a new element into an array at the position entered
by the user.

5. Write a C program to calculate the summation of two integer armays.

6. WriteaC program to find out the number of even and odd numbers present in
an integer array.

7. WriteaC program to calculate the summation of all the even and odd numbers
present 1o an integer amay.

8 Write aC program to estimate the transpose of a input matrix.

9. Define string. Write down the differences between string and a character array.

10. 'Write a C program to check a string is palindrome or not.

11. Write a C program to reverse a string without using string library functions.

12. Write a C program to replace a particular characier in a string by a character
entered by the user.

4.14 REFERENCESAND SUGGESTED READINGS

¥ Kanetkar, Y, P., Ler us C. BPB publications, 2016
¥ Goitfried B., Chhabma J. K, Programming with C, Schaum’s Cutlines Series,
Tata McGraw Hill Publications, 2011

> Balagurusamy E., Programming in ANSIC , Tata McGraw Hill Publications,
2006

» Venugopal, K. R., Prasad S.R, Mastering C. Tata McGraw-Hill Education,
2007,

UNITS FUNCTIONS

CONTENTS

5.1 Introduction

5.2 Objectives

5.3 Whatisa Function?

5.4 Structure of # Function

5.5 Declaration of a Function

5.6 Function Definition: Formal Parameters & retum Statement
5.7 Function Call: Actual Parameter
5.8 Call By Value

5.9 Call By Address

5.10 Types of User Defined Functions
5.11 Passing Array To Function

5.12 Passing String To Function

5.13 Recursive Function

5.14 Summing Up

5.15 Answers to Check Your Progress
5.16 Possible Questions

5.17 Further Readings

5.1 INTRODUCTION

Functions are one of the important building blocks of C language. Function
performs some tasks and it can be used in a program several times. The task of a
function is pre-defined and so it can perform only the task for which it is designed. In
the previous Units the most commeon functions encountered so far are; printf{) and
scanf{) used for the purpose of output and input respectively.

5.2 OBJECTIVES

Afier going through this unit, you will be able to:
e understand why function is necessary and its advantages,
* understand the components of a function — function prototype, function
definition and function call statement, return-type and argumeni(s) of a function,
o integrate a function into a program,

165

Space for learners
nofes

Space for learners

Holes

e know the differentiate between function call by value and function call by
address,
« understand the concept of recursive function and its use.

5.3 WHATISAFUNCTION?

A funection can be defined as a group of statements that perform a task. A function
may be called (used) from anywhere in a program for any number of times. There are
two categories of Functions and they are: library functions and user-defined
functions. !

Library Functions are those functions that are implemented in the C library. Prototypes
of these functions are declared in several header files (files with extension. h) Library
functions are grouped according to their uses and different header files are defined to
hold their prototypes. Prototypes of Mathematical functions are declared in the file
‘math. b’ Prototypes of functions dealing with strings are declared in the file *string.
b’ We can just use a function in our program whenever the tasks implemented in that
function are to be performed. In the earlier Units you have come across different
library functions, &.g.,

A User Defined Function is a function which is implemented by a user (mainly a
programmer). So, now onwards we will discuss about User Defined Functions.
main() is a special user-defined function which is mandatory to be implemented in
every program as the execution of a program starts from it.

A program can have more than one user-defined function. Conventionally, functions
are so designed that each one of them performs some independent task and later
ntegrated in a smgle program.

STOP TO CONSIDER

Ina statement of a C program if a word contains *()’ at the end then that word
with *()’ isa function e.g., in the statement ‘y=summation();" then you remain
sure that summation() is a function (may be user defined one or a library
function).

The following are some advantages of using functions:

1. By defining functions a programmer can divide the entire task of the program into
simple subtasks.

2. Inaprogram, a task containing multiple statements may have to repeat a no. of
times. Ina function the task-code can be implemented and wherever in the program,
the task is required to be performed, just use that function. Thus it reduces the
size of the program instead of implementing the same set of code again and again
in the program.

3. InC,a function defined for a particular task can be shared or used by different
PrOgrams.

L&

4. Theadvantage of implementing the repetitive code as a function is that whenever
there is a requirement of modification in the task-code, you just modify the code
- e de the fumction and the modification will be reflected inevery use of the function.

5.4 STRUCTUREOFACFUNCTION

As already mentioned, a function is a group of statements, which perform a particular
task: 5o there are rules for its declaration, definition and use. From the previous umits,
it is clearly understood how library (built-in) function can be used in our program to
perform a particular task for which it is designed.

A user defined function can occur in-a program in the following ways.

% Function Declaration (or Function prototype)

% Function Definition:: Formal Arguments

» Function Call:: Actual Argumenis
The sections. to follow, will dwell upon the ways one by one. Consider the following
program, Program-1, where in the “main()” function, two integers are taken as input,
then calls the user defined function “sum()” passing the two input integers and gets the
surmmation in retumn. Then the summation is displayed on to the screen.
Program-1:
#include<stdio.h=
finclude<como.h>

int sumfint, inf); <+

Function Declaration or Prototype o
function sumi})

void main() -th—ﬁcﬁnitiun of main() function _i
{

clrser(),
int a, b, result;
printf{“Enter a number:”™)
scanf*“%ed”, dea);
printf{*Enter another number:”)
Calling sum() function |a, b are Actual Arguments.
scanf(*%d”, &b);

Calling sum() function [a, b arg
Actual Arguments.

printf{* The Summation=%d", result};

result=sumi(a, b); *+—

}

2 con s Eﬁfmitiun of function sum() [x,
int sum(int x, inty) re meﬂArzmnrlm. l ,1

167

Space for learners

notes

Space for learners
notes

ints;
XY
retum (s); +———Definition of sum () function

5.5 FUNCTION DECLARATION

Like variables, the declaration of a function is necessary before it is used. The function
declaration is formally known as Function Prototype. As the name profofype means
modelblueprint, the function prototype means the blueprint for the function which
basically describes/informs the compiler about the return type, function name and
data-type of the parameters/arguments passed to it. Except the “main()” and the
library functions, all other user defined functions should have a prototype.

Before going into detail about function let’s first try to understand what is parameter
or argument to a function. Consider the following statement,

printf{*“The average=2afl", avg),
where, avg is a variable of type float. [n this printf{) function call there are two data-

items inside the () brackets and they are “The average="d" , avg. These two
data-iterns are lermed as parameters or arguments to the function printf{).

The syntax for function declaration/prototype is:

return-type function-name (parameter-type-list);

You may get confused with the word return-type, well, it means data-type!!! Yes,
only valid data-types (built-in/user defined) can be used as retum-type fora function.
Return-type basically describes the kind of the data/value, a function can retum. If, a
function should return an integer data/value then the return-type should be one among
int/short intlong int. If a function does not return any value then the return-type
should be void.

function-name is the name given to a function. The rules for naming a function are the
same as thal for a variable.

The parameter-type-list is the list of data-types for the data/values to be passed to
the function as parameters, cach separated by *,’. Sometimes, along with the dfita-
type a parameter name is given for each of the parameters in the list but this is optional.
The function prototype statement should be terminated by a semi-colon. From the
Program-1, the declaration of the function sum() is illustrated in Fig-5.1.

168

int sum (int, int);
‘ ; Parameter-2 Data-type
Parameter-1 Data-type

Function Name

Return Type
Fig-5.1

The above prototype tells the compiler that the function sumy() takes two integers as
arguments and retums an integer. The values/data which a function takes are called
parameters or arguments. A function in C can take as many arguments as it needs (or
no arguments at all) but can retum only one value,
Example-1: Write a function prototype which takes a character as parameter and
returns nothing.
void fun_] (char);
OF, WE Can write as
void fun_1 (char param);
Explanation:
v Since, the function returns nothing the retum-type is mentioned as void.
v fun_1 is the name of the function.
v ‘char’ or ‘char param’is mentioned within () brackets as it is said that the
function takes a character as parameter.

Example-2: Write a function prototype which takes two floating point numbers as
parameters and returns their summation.

float summation (float, float);
OF, We can write as

float summation (float num 1, float num?2);
Explanation:

v Since it is said that the function retums the summation of two floating point
numbers so, the retum-ty pe is mentioned as float.

¥ summation is the name of the function.

¥ ‘float’, ‘float’ (or ‘float num1’, ‘fMleat num2’) are mentioned within ()
brackets as it is said that the function takes two floating point numbers as

STOPTO CONSIDER

If the definition of a particular function (e.g. sum) is mentioned after the function,
from where the 1* function is called upon (e.g. main), then the function
declaration/prototype 1% function (sum) is mandatory. But, if the 1* function
(sum) is defined before the 2* function (main) then the declaration/prototy pe
is optional. I

Space for learners

169

—

Space for learners

noifes

5.6 FUNCTION DEFINITION: FORMAL
PARAMETERS & THE return STATEMENT

The definition of a function tells exactly what the function is written for. A Function

Definition comprises of the function name, return-type, number of parameiers

with their types and its body. A Function is a block of statements that will be

executed when the function is called. The syntax for function definition is:
return-type function-name(type param/, type paramJ2......)

{

[fStatements
1
In the above syniax,
» return-type is the data type of the value/data to be returned by the function.
function-name is the name of the functbon.

“type param1, type param2,....... " is the list of parameters to be passed to
the function. Here, unlike in function prototype, name of the parameter along
with its type is mandatory for each of the parameters for the function.

v

":l

STOF TO CONSIDER

You may notice in the symfax of the function definition that at the end of the
header statement there is no ;' mentioned (to end the statement). This so
because, it is the start of the function definition and it will be marked end by }.

Consider the definition of function sum() in Program-1, which is mentioned after the
miaing):
int sum (int x, inty)

ints;
—— Iﬁ.{:dy of the function sum() h
retum (s);

i

In the above function sum{),

» Apart from return-type as int and function-name as sum, the function heading
also contains x and y as two parameters of type int.

» | starts the body of the function.

» 1% statement, within the body of the function, is the declaration statement of
the vanable s

% in the 2* statement. within the body of the function, the value of x and y are
added and stored into variable s. x and y will contain the values that will be
passed when the function will be called.

17

» The last statement, within the body of the function, will return the value of the
variable s to the funetion from where the function sam() will be called upon.

5.6.1 Formal Parameters/Arguments:

Consider the definition of function sum() mentioned above. Here, x and y are used as
parameters/arguments for the data/values to be passed when the function sum() will
be called and they are called as Formal Parameters or Formal Arguments. Thus
Formal Parameters/Arguments can be defined as the parameters/arguments that
are mentioned in the definition ofa function.

In the function sum() there is a variable s which is local to the function. But at the
same time the parameters x and y also can be treated as local variables of the function
sumi().

Now, when the sum() is called with the parameter-values, the function sum() starts
executing and the two parameter-values are stored in x and y respectively.

STOP TO CONSIDER

The names of the formal and the actual arguments may be same or different but
the data-types have (o be same.

5.6.2 The return Statement:

In the definition of the sum() function of Program-1, the return is used at the end of
the function body along-with the variable s within (). This means that the value of' s is
retumed to the function from which the sum() is called upon, i.e. from within the
Basically, the return staternent is used for two purposes:
¥ To returmn a value from a function{known as called function) 1o the
function(known as calling function) from which the 17 function is called.
For this, the value/value of the variable 1o be returned is mentioned at the
end of return statement within (). The () are optional i.e. we may not use the
() while mentioning the value/value of the variable.

¥ Toend the execution of the called function and transferring the control back
to the calling function. So, in this situation along-with the return statement no
value/value of a variable is mentioned.

B C——

STOPTO CONSIDER

The main limitation in the use of the retum statement is that you can use it to
return only one value.

17

: Space for learners

Space for learners

nofes

" CHECK YOUR PROGRESS-1
1. What is function?
2. What do you understand by User Defined Function?
3. What is Function Prototype?
4. What is Formal Arguments or Formal Parameters?
State TRUE or FALSE:
5. A function always retumns a value.
6. A function may or may not have parameters.
7. return statement is used to end a function.

8. Return type of a function can be void.
8. ASCII stands for
9. Division by zero (0)15a _ __e1Tor.

5.7 FUNCTION CALL: ACTUALPARAMETER

Basically, the Funetion Call means the use of a function in a program where the
function may be a library function or a user defined function.

Consider the main() function in Program-1.
void mam()
{

clrser();

int a, b, result;

printf{“Enter a number:");
scanf{"%ed", &a);

printf{“Enter another nurnber:”);
scanf{“%d”, &b);

result=sumia, b);

printf{*The Summation=%d", result);

getch().
H
Here in the main() function,
¥ two infeger inputs are stored into the variable a and b using two scanfi)
fesidon

¥ inthe staterment,

resuli=sumia, b);
the function sum() is used(or called) with the variable a and b mentioned
within ().

Actual Parameters/Arguments:
Consider the definition of function main() mentioned above. As mentioned earlier, a
and b are the two variables passed to the function sum() when it is called. Here, a
and b are known as Actual Parameters or Actual Arguments. Thus Actual
Parameters/Arguments can be defined as the data/value those are passed to a
function [mentioned within ()] when it is called. These arguments are the actual
arguments to be worked with.
Now, let"s discuss about how many ways parameters can be passed to functions.
There are two ways of passing parameters (o a function (may be a library or user
defined function) and they are:

« (Call By Value

s (Call By Address
In terms of parameter/argument passing, the above mentioned ways are also known
as:

+ Pass By Value

s Pass By Address

58 CALLBYVALUE

In this parameter passing technique only the values are passed as parameters. [n the
above mentioned main() function while calling the function sumi(), the vanables a and
b are passed as arguments(actual). Thus, the values stored in a and b are passed to
the function sum() when it is called. As in this method of function call, the values are
passed as parameters to the called function, hence this method of function call 1s
known as Call by Value or Pass by Value.

Consider the Program-2. Here in this program sum() is a user defined function,
same as mentioned in Program-1. But the main() function(in Programs-2) is different
from the main() in Program-1.

Program-2: Demonstration of Call By Value.

#include<stdio.b>
#include<conio.h>
void main{)
{
cirser();
int result;
result=sum(5, 2);
printf{*The Summation=%", result);
getch();
H

173

1 Space for learmers

it sum (int X, inly)

Space for learners
nofes l)

int s;
XY,
retum(s),

)

Output:

The Summation=T

Explanation:

When the program runs, execution starts for the main() function. Statements in the
main() start executing one-by-one. When, the following statement execuies,
result=sum(35, 2);

¥ the sum() function is called with actual arguments 5, 2.

v Theexecution control is now transferred to the function sum() with the values
5 and 2, [passed from the main()] those eventually stored in the xand ¥
respectively.

v Inside sum(), the values stored in x and y, i.e. 5 and 2 respectively, are
added and then assigned 1o 8.

v Atthe end of sum(), the return statement returns the value of s, i.¢. 7, and
transfers the execution control back to the above statement in the main()
function from where the function sum() was called.

¥ The returned value 7[value of s in sum()] is assigned to the variable result in
the main().

¥ Now, the printf{) statement is executed and the output is produced onto the
screen.

| The above explanation is depicted in Fig-2.

Stox

Ttoy
Trunsler of
Execiition
Control

'1 7 to result

Fig-5.2: lllustration of function calling, parameter passing & returning a value
{(Program-2)

174

Now, let’s try to explain the execution of Program-1. Consider that 10 and 20 are
the given input for the vaniable a and b respectively.
Ouipui:

Space for learners
Roles

Enter a pumber: 10
Enter another number:20
The Summation=7
Explanation:
In the main() function, when the following statement executes,
resalt=sumi(a, b);
v the sum() function is called with actual arguments 10, 20 as they were the
given inputs for a and b using the two scanf{) functions.
¥ The execution control is now transfermed to the function sum() with the values
of aand b, i.e. 10 and 20, [passed from the main()] those eventually stored
in the x and y respectively.
¥ Inside sum(), the values stored in x and y, i.e. 10 and 20 respectively, are
added and then assigned to s.
¥ At the end of sum(), the return statement returns the value of s, i.e. 30, and
transfers the execution control back to the above statement in the main()
fumetion from where the function sum() was called.
¥ The returned value 30 [value of s in sum()] is assigned to the variable result
in the main().
¥ Now, the printfl) statement is executed and the output is produced onto the
3Crochl.
The above explanation is depicted in Fig-3.

10 to x (as & contains 10)

2 toy (asa mmalllis-ir}i

| 30 to result (a5 5 contains 30)

Fig-53: llustration of function calling, parameter passing & refuming a value
(Program-1)

| Space for learners
nofes

5.9 CALLBYADDRESS

Before discussing the topic, let’s first know about Address. The main memory is
addressable which means that any object which resides in it has proper Address.
The addresses of main memory are just some unsigned whole numbers. The variables
can be accessed by their names as well their addresses. We already know that the
Address-of-Operator (&) is used to get the Address of the memory location used
by a variable. Now the term, Call By Address, means that while calling a function -
we need to pass the location address. And in the called function the data-itemn in that
location can be accessed using the address passed. So, in the definition of the function
the argument should be such that it can hold an address of a location. For this let’s
discuss about Pointers.

What is a Pointer?

Apart from address-of-operator we also have to know about another kind of variable

that can store the address of a memory location. This kind of variable is known as

Pointer Variable. Thus, a Pointer Variable can be defined as the variable which

can store an address of a memory location. The declaration syntax of a pointer variable

i the same as that of a simple variable with a little difference and this difference isthe

use of *** symbol before the variable name. For example,

mt *a;

The shove statement is pointer variable declaration statement which means that "a’ is

a pointer variable which can store the address of an integer variable. Consider the

following statements, which clearly describe the use of a pointer vanable.

int x=100;

int *p;

p=&X;

v The first staterent declares an integer variable x as well as 100 is assigned to it.

v Second statement declares an integer pointer variable p.

v In the third statement, the address of the variable x is assigned to the pointer
variable p.

Fig-4 depicts the scenario after execution of the third statement while considering the

address of x is 100001 and address of p is 100010.

1000001 100010
L P
Fig-5.4
Thus, pcontains the address of x and this is like variable p is pointing to the variable
x. Because of the above fact such kind of variable is termed as Pointer variable.
Therefore the variable x can be accessed using x itself and p. These are illustrated in
the following display statement.

176

printf{* The value of x = %d”, x);

printf{*‘nThe value of x="%d", *p);

Ouipui:

The value of x= 100

The value of x= 100

Explanation:

¥ The first primtf{) will display the value of x using itself.

v" The second printf() will display the value of x using p. So, here *p means the
value at the memory location whose address is stored in p. In other words,
*p means the value at the location pointed by p.

Now, you may think of that if *p and x means the same location then what does p
mean??7? The p contains the address of x, i.e. 1000001. So, the following statement
will display the content of p, i.e. the address of x, and which 1s 1000001.

printf{**The address of x (using p) = %", p);

Here, the format specifier %ou is used, as the address of a memory location is an
unsigned integer. The address value will be displayed as a hexadecimal number
instead as a decimal number.

The following statement will also display the address of x.
printf{*The address of x (using x itself) = %u", &x);

Hope!!! that you have a got a clear idea about addresses and pointers. Now, let’s
come to the topic of discussion i.e. Call By Address or Pass By Address.

But in this case, Call By Address, the itemns 10 be passed to the called function (while
calling) are the addresses of the locations, i.¢. addresses of the vaniables. And the
iterns to be taken by the function (while defining) are pointers.
To understand this, let's consider the Program-3 which is a modification of Program-
1.
Program-3: Demonstrating the Call By Address/Pass By Address.
#include<sidio h>
#include<conio.h>
int sumyint, int);
void main()
i

clrser();

int a, b, result;

printfi*Enter a number:™)

scanf{*%ed", &a);

printf{** Enter another number:”)

177

Space for learners
nofes

Space for learners

nofes

.

scanf{*9%d”, &b);

result=sum{&a, &b);

printf{The Summation=%ed", result),
getch();

!

int sum(int *x, int *y)

{

ints;
=x+ %y}
retumn (s);

)

The statements which are modified are marked as bold in the above program. The

output of this program will be the same as the output of the Program-] if same inputs

are considered for a and b.

[et’s discuss the execution of the program in brief. Execution starts form the main()

function.

In the main{) function:

v" Using scanfi) functions, two inputs are taken and stored into the variables a and
h.

v Inthe statement, marked as bold, the sum() function is called and &a (i.e. address
of &) and &b (address of b) are passed as arguments.

Now, execution control is transferred to the sum() function. As the arguments from

ﬂtmﬂﬂ}ﬁn:ﬁonmnﬂrmuf;hlfmefmtﬂtfﬂnﬂﬂw in the definition

of the function sum() are declared as integer pointers.

In the sum() function:

¥ The addresses of a and bpassed from main() are stored into the pointer variables
x and y respectively, i.e. xand y are pointing 10 variables a and b in main()
function.

v Inthe statement, s=*x+*y; *x and *y means the variables a and b of the main()
function. So, the values of a and b, i.¢. pointed by x and y, are added and stored
into the variable s.

v The value of 515 returned 10 main().

Now, the execution control is transferred back to main() function. In the main()
fimction:

¥ The returned value from sum() is then stored into the variable result.

¥ The value of the result variable is then displayed using printf{).

178

5.10 TYPES OF USER DEFINED FUCNTIONS

We have already discussed the basic concepts related 1o Function Prototype, Function
Definition and Function Calling. Functions can be categorized in to different types
depending on the return type and the arguments. These are:

5.10.1 Function With No Argument And No Return
Value:

Function with no argument means no argument list within () in a function definition
and hence no argument in function calling and function prototype.

Function with no return value means void as return type of the function.
Functions of this type, defined by user are very rare as there is no communication
made within this kind of function and the caller of the function. But there are built-in/
library functions of this type e.g, clrser(), geteh() etc.

Program-4 is an example of a user defined function of this kind.

Program-4: Write a function which will display the nos. from 1 to 10. Also write the
main() function.

#include<stdio h>

#include<conio.h>

void displaynums();

void main()

{
clrser();
displaynums();
getch();

}

void displayoums()

{
inti;
printf{(*The numbers from 1 to 10 are:n\™);
for (i=1; i<=100; i++)
i

printf{"%ed “, 1)

179

Space for learners

mares

Space for learners

Quiput:
The numbers from 1 to 10 are:
12345678910

5102 Function With Argument(s) But No Return Value:

Funciion wﬂﬁargumsnmnsﬂmmybcmnrmﬂmmwin
aﬁmﬂinduﬁ;iﬁmandrumugmnﬁuﬁﬂhﬁmﬂjmwﬂmmﬂﬁnﬂmmm
Function with no reiurn value means void as return type of the function.

This is illustrated in Program-5 mentioned below.

| Program-5: Write a function which will take two numbers as arguments and displays

the nos. between them. Also write the main() function.
#include<sidio h>
#include<comio.h>
void displaynums(int start, int end);
void main()
{
clrser();
displaynums(100, 500);
getch();
i
void displaynums(int start, int end)
i
inii;
printf{“The numbers from %d to %ed are:n\", start, end);
for (i=start; i<=end, i++)
i
printf*%5d “,i)

!

Ouiput:
The numbers from 1 to 10 are:
12345678910 e i 5040

5.10.3 Function With Argument(s) and Return Value:

Function with arguments means there may be one or more than one arguments in
a function dcﬁniﬁmmﬂ}mmmgunmﬁimﬁmﬁmmlﬁngandﬁn:ﬁmmm

LBO

Function with return value means data types other than veid as return type of the
fimction.

This is illustrated in Program-6 mentioned below.
Program-6: Write a function which will take two numbers as arguments and retums
the summation of the nos. between them. Also write the main() function.
#include<sidio h>
#include<conio h>
int summation(int start, int end);
void main()
{
clrser();
int x, y, result;
printf{Enter the starting no: “);
scanfl"%ed”, &x);
printf{*“Enter the ending no: *);
scanf{" %od”, &y);
result=summation(x, ¥);
printf{*The summation of the numbers from %d to Yad=",
result);
getch();
}
int summation(int start, int end)
{
int i, sum=0;
for (i=start; i<=end; i++)
{
sum = sum + i;
}
retum (sum);
J
Consider the input given to x and y in the main() function are | and 10 respectively.
Ouiput:
Enter the starting no: |
Enter the ending no: 10
The summation of the numbers from | o 10=355

Space for learners
noles

Space for learners
nofes

5.10.4 Function With No Argument But Return Value:

In this type of functions, no arguments are declared in the definition of the functions
but return type should be mentioned related with the type of the value to be returmed
from them.

This is illustrated in Program-7 mentioned below.

Program-7: Write a function which will return the summation of the nos. from 1 to
10. Also write the main() function.

#include<stdio h>
#include<conio.h>
int summation();
void maind()
{
chrscr();
int result;
result=summation();
printf{*The summation of the numbers from 1 to 10=",
result);
getch();
}
int summation()
{
int i, sum=();
for (i=1; i<=10; i++)
{
sum = sum -+ ;
'
retum (sum);
H
OQutput:

The summation of the numbers from 1 to 10=55

5.11 PASSINGARRAY TO FUNCTION

InaC, like variables/elements, we can also pass armay 1o a function as parameter. We
know that the syntax of declaring an one dimensional array is:

data-type array-name | size |;
The same syntax is used while declaring an array as argument in a function definition
but with a little modification and whichis:

void process(int al])
{

Statements.

H

But in this case, can the declaration of the ammay-argument be sufficient to carry the
information about the size of the arrary passed 1o when the function is called. Definitely
not!!! So, for the size information we also need to declare an integer argument along-
with the declaration of the array-argument. Thus the definition of the above function
should be

void process(int al], int n)

...................

where the argument n is for the size of the army-argument af].
Now, the prototype of the function process() may be wrnitien as:
void process(int a[10]);
Or, void process(int af]);
Or, void process(int []);
During the call to the function sum(), we have to pass two items as arguments: the

name of the actual array as 1* argument and the mo. of elements present in the
array as the 2 argument.

STOP TO CONSIDER
Ina function, where an array is passed as parameter, if we modify the elements
in the array this means that the modification is actually done in the original array.

Program-8: Write a function in C to calculate the summation of the nos. in an integer
array passed as parameter to it. Also write the main() function.

Hinclude<stdioh=>

#anclude<conio h>

Space for learmers
nofes

183

Space for learners
notes

int arraySUM(int [], int);
void main()
i
clrscr(),
int a| 1007, n, i, result;
printf{*How many nos. you want to enter: “);
scanf{*%d", &n);
printf{*Enter the nos:\n");
for (i=0; i<n; i++)
I
scan{{*%ed”, &ali])
}
result = arraySUM(a, n);
printf{*The Summation: %d”, result);

getch();
}
int arrayS l‘rM{h'ﬂ arr]], int size)
{
init i, sum={;
for () 1<size; +++)
{
sum = sum + arrfi};
)
return (sum};
H
In the oufput, except the last line all the other lines contain the input(s).
Output:
How many nos. you wanf to enter: 5
Enter the nos:
2
4
8
45
1

The Summation: 60

Since, in Program-8, it was not mentioned clearly that afier calculating the summation

in the function what is to be done, i.e. whether the function should return the summation

or display after calculation within it. So, the above program can also be written as:
184

#include<stdio b~

Space for learners
#include<comio b= -::Me;s
void arraySUM(int [], int);
void main{)
i
i
clrscr();

int a[100], n, i, result;

printf{“How many nos. you want to enter: *);
scanf{"%ed”, &n);

printi{*‘Enter the nos:\n");

for (i=0; i<n; i++)

scanf{*%oed”, &ali]);
i
arraySUM(a, n);
getch();
}
int array SUM(int arr{], int size)
{
mit 1, sumiD;
for (1=0; i<size; i++)
i
sum = sum + arr{i};
)
printf{*“The Summation: %ed”, sum);
'
This program is written in such a way that if the inputs are the same as above then the
output will be exactly the same.

Program-9: Write a function in C to find maximum of the nos. in the integer array
passed as parameter to it. Also write the maing) function.

#include<stdio.h>

ffinclude<conio b=

void findmax(int [], int);

void main()

{

clrser();
inta| 100], n, i, result;

printi{™ How many nos. you want to enter; *');
185

Space for learners
noles

scanfl*“%ed™, &n),
printf{*Enter the nos:'\n");
for (i=0; i<n; i++)
i
scanf{™%ed", &ali]);
H
findmax(a, n);
getch();
H
int arraySUM(int arr{], int size)
!
int i, max=arr{0];
for (i=1; i<size; i++)
{
il awr{ i }max)
{
max=art{i];

H
printf{*The Maximum No: %d”, max);
i
In the oufput, except the last line all the other lines contain the input(s).
Ouipui:
How many nos. you want (o enier: 3
Enter the nos:

3

F

4

B

45

|

The Maximum No: 45

5.12 PASSING STRING TO FUNCTION

Like array, a string can also be passed as parameter to a function. The syntax of
defining a function which takes a string as parameter is:
return_type function_name(char string_array(])

Statements.. ..o

}
In the syntax, you can notice that unlike functions no argument related to size of the
string is declared. This is because, since string is an array of characters but marked
the end of data by the “\0" character. Also there isa library function, strien(),declared
in string. h which returns the length of the string passed to it. So, to get the size of the
string, i.¢., the length, a programmer has two options: either by counting the chamcters
in the string one-by-one fill the character 0" is seen or just by calling the strien()
library function. :
[t is not true that we cannot pass the length of the string along-with the string itself 1o
function. We can pass the length of the string also as parameter but it is useless because
of the reason mentioned above,
The Program-10 will help you to understand the above facts.
Program-10: Write a function in C which returns the no. of vowels in the string
passed as parameter to it. Also write the main() function where the string to be
passed is to be taken as inpul.
#include<stdio.h>
#include<conio.h=
int vowelnos(char []);
void main{)
{

clrser();

char strname[100];

Imt nao;

printf{“Enter a String: *);

scanil*%es”, stmame);

no=vowelnos(strname);
printf(**The no. of Vowels=%d", no);
getch();

!

int vowelnos(char n[])

{
int i, count;

for (i=0, count=0; n[i]!="0"; i++)
i
iftn[i]="a’ || n[i}=="¢’ | n[i}=="1"| nfi]=="0"|| nfi}="v’ || ni="A
| ofi}=="E" || afi}=="1" || n[i]=="0" } n[i}=="U")
{

count++;

187

Space for learners
noles

Space for learners
noles

}
returm count;
}
Suppose in the main() the input string is WELCOME TO IDOL.
Cruipui:
Entera String: WELCOME TO IDOL
The no. of Vowels= 6
In the definition of the function vowelnos{) there is only one parameter but it is sufficient
because the parameter to be passed is a string.

5.13 RECURSIVE FUNCTION

Till now, all user defined functions discussed above are called by the main(), which is
also a function. So, any function can be called from any other functions. Apart from
this, C also enables a function to call itself. This technique is called Recursion.
Recursive Function is a function which calls itself directly. Consider the following
Fig-5.5.

A()
void Al
{ Al +——
Al
H
{a) (b)

Fig-5.5

In the definition of A(), there is a staternent which calls the function itself [Fig-5. 5(a)].
The function A() is a Resursive Function. This is shown graphically in Fig-5.5(a).
There is another term known as Indirect Recursion. Indirection Recursion occurs
when one function calls another function that then calls the first function. The following
is an example of Indirect Recursion. Consider the following Fig-5.6.

woid A()

AQ)

BO

{

143

B(); Al +—

void B()

A():; o A

(a) (b)
Fig-5.6
In the definition of A(), there is a staternent which calls the function B({) and in the
definition of B() a statement calls the function A() [Fig-5.6(a)]. Ths is called Indirect
Recursion. This is shown graphically in Fig-5.6(a).
Program-11: Wiite a C program which calculates the summation of the no. from | to
3 using recursive function.
#include<stdio.h>
#include<conio.h>
int cale(int n);
void main()
{
printf{*\nThe Summation =%d", cale(3));
}
int cale(int n)
Quiput:
The Summation= 6
Explanation (Graphically):
cala(3)
i |

3 + cale(2) Retorm 3+3=6

1 L

2+ cadl) Retom 2+1=3

i

1+ cado0) Return: 1+1=1

E—

Fig-5.7

189

Space for learners
noles

Space for learners
noles

In the above Program-11, when, in the main(), the cale() is called with argument
value 3 and it calls itself as with argument value 2 then with argument value | then with
argument value 0 and now the function eale() retumns with a value of 1. This return
action makes the previous function calls to return with appropoiate values. The function
which is called last is the one to return first.

Program-12: Write a C program which calculates the factorial of ano. using recursive

flmction.
#include<stdio h>
#inchde<conioh>
int fact{int n);
void main{)
{
printf(*nThe Factorial of 3 =%d", fact(3));
i
int fact(int n)
{
if(n==0)
retumn | ;
clse
return n* fact(n-1);
H
Ouipui:
The Factonial of 3=6
Explanation (Graphically):
l‘&ﬁiil
iy .
1 * fact(2) Returm: 3*2=6
2* fact(l) Retun:2* 1=12
1 * fact{0) Retumn: | 'T! =|
| s Reum: |
Fig-5.8

190

CHECK YOUR PROGRESS-2
9. What do you understand by Actual Parameters”
10. What are the two ways of calling a function?
11. What is Pointer? How is it related to Call By Address?

12. What do you understand by function with no argument and no refurn
value?

State True or False:

13. *p means the location whose address is stored in p.

14. In Call By Value the addresses of the storage locations are passed.

15. An array cannot be passed as parameters to a function.

Fill-in the Blanks:

16. function calls itself.

17. While passing an array toa function, the of the array should also
be passed.

18. The format specifier for address of a memory location is _

5.14 SUMMING UP

This Unit contains discussions about Functions; its different types and its advantages.
As discussed in this Unit, C library is consists of a no. of header files, ¢.g., stdie.h,
conjo.h (in Windows only), string.h cic. These header files contain different functions
for different purposes.

The concept of User Defined Functions is also discussed in this Unit. This type of
fimctions are very useful to cater out own needs while writing C programs. The structure
of a user defined function is discussed very clearly in this Unit with its differeat parts.
The two ways of calling a function, Call By Value and Call By Address, are discussed
very clearly with examples. Though the Pointer concept is to be discussed mainly in
Unit-7, for Call By Address which requires to work with memory address, so a basic
averview on pointers is given in this Unit.

The Unit is trying to give besic ideas related with function definition, function call, and
function prototype. An important fact related to function prototype is that if a function
is defined before another function [generally main()] form where the first function is
called upon then declaration of the prototype for the first function is optional. But if
the first function is defined after the function (from where the first function is called),
then the prototype of first function is to be declared.

The types of user defined functions in relation with arguments and return type are tried
to discuss in detail with the help of examples. Also functions with array as arguments
are also discussed with examples.

171

[Space for learners
noles

Space for learners
notes

5.15 ANSWERS TO CHECK YOUR PROGRESS

B e B

12.

13.
14,
15.
16.
17.
18.

A function can be defined as a group of statements that perform a task. A
function may be called (used) from anywhere in a program for any number of
times.

User Defined Function is a function which is implemented by a user (mainly a
programmer). main) is a special user-defined function from where the execution
of a program starts.

Like variables, the declaration of a function is necessary before itis used The
function declaration is formally known as Function Prototype.

The Formal Parameters/Arguments can be defined as the parameters/arguments
that are mentioned in the definition of a function.

False

True

False

The

Actual Parameters/Arguments can be defined as the items/values those are
passed to a function when it is called.

There are two ways of calling a function and they are namely Call By Value/
Pass By Value and Call By Address/Pass By Address.

A Pointer or pointer Variable can be defined as the variable which can store an
address of a memory location.

Function with no argument means no argurment list within ()ina fimction definition
and hence no argument in function calling and function prototype also. Function
with no return value means void as return type of the function.

Tree

False

False

Recursive

name

Sau

5.16 POSSIBLE QUESTIONS

Short answer type questions:

|

. What are the main advantages of using functions’
2. Write down the categonies of functions?

3.

4. Why does the return statement used in a function?

What is the syntax of defining a function?

192

-
6.

What is the difference between a Function Definition and Function Prototype?
What is the purpose of the retum statement.

Long answer type questions:

7.

10.
1.
12

13.

14,

Write down the syntaxes for Function Prototype, Function Definition and
Function Call.

Differentiate between Call By Value and Call By Address.

How can you relate pointers with Call By Address? Discuss with the help of
an example.

How can armay be passed to a function? Discuss with the help of an example.
What is a Recursive Function? Discuss.

Write a C function to define a function which swaps the two arguments passed
as parameters so that swapping reflects in the actual parameters.

Write a recursive function to evaluate

S=]1+2+.....+n

What is a Recursive Function? Discuss.

5.17

FURTHER READINGS

. Kemighan, B. W, & Ritchie, D. M. (2006). The C programming language.

Balagurusamy, E. (2012). programming in ANSI C. Tata McGraw-Hill
Education.

Kanetkar, Y. P.(2016). Ler us C. BPB publications.

Schildt, H., & Turbo, C. (1992). C: The Complete Reference. McGraw-
Hill, Inc., New York, NY, UUSA, 4, 39,

193

Space for learners
notes

UNIT6 STRUCTURESAND UNIONS

CONTENTS

6.1 Introduction

6.2 Objectives

6.3 Defining a structure

6.4 Declarationand Initialization of Structures
6.5 Accessing the Members of a structure
6.6 Structures as Function Argumenis

6.7 Structures and Arrays

6.8 Unions

6.9 [ntializing an Union

6.10 Accessing the Members of an Union
6.11 Check Your Progress

6.12 Answers To Check Your Progress
6.13 Summing Up

6.14 Further Reading

6.15 Model Question

6.1 INTRODUCTION

We have seen in the carlier chapter that arrays are used to store a sct of data
itemns but the main disadvantage of using arrays is that all the items stored in the array
are of the same data type. Whal if the programmer wanis to store items of different
data type? Fortunately C programming supports the concept of grouping items of
different data types into a single logical unit called structures. The items within a
structure are called members of the structure. The members can be of integer, floating
point, character or any other data type. The members can also be an amay, pointer or
even structures, Structures are powerful concept that help us to manage complex
data in a meaningful way which otherwise would not have been possible to represent
with existing built in data type like integers, float, char etc.

Some examples of structures are:
s book: title, author, publisher, edition, price
» vehicle: make, model, year, price
o emplovee: id email, year of joining, date_of birth, designation, salary
s fime hour, minute, second, millisecond
e frut weight, colour, taste

195

Space for learners
Holes

Space for fearners

6.2

OBJECTIVES

Alfter going through this unit, you will be able to:

Understand the basic concept of structure and its advantage over amays.
Leam how to define a structure in a program.

Leamn how structure variables are declared and initialized in a program.
Wrile programs to access individual members of a structure variable as well
as perform operations on them.

Learn how to pass structure values to function as argumens.

Understand the way of declaring array of structures and use it in program.
Understand the basic concept of union and its distinction with structures.
Learn how to define a union in the program.

Learn how union are declared and initialized in a program.

Write programs to access and perform operations on individual members of
aunion.

6.3

DEFININGASTRUCTURE

A structure must be defined first before structure variables can be declared and
initialized. The general syntax for defining a structure is shown in Fig. 6.1.

struct structure_pame

d

data_type member 1;
data_type member 2,
data_type member 3;
data_type member n;
| ¢

Fig. 6.1: Syntax for defining a structure

struct is a keyword

the definition must end in semicolon

each member is declared separately with its data type and ends in semicolon
structure _name is used to declare structure variables in the program

Let us consider an example as shown in Fig 6.2 to understand the process of defining
a structure. We consider an employee database 10 store id, email, year_of_joining,

196

date_of_birth, designation and salary for the all the employees of an organization. For
this we define a structure with the name employee to hold the above mentioned
information as follows:

Space for learners :

iy |

char email[20];

char year_of joining[10];
char date_of birth[10];
char designation[10];
float salary;

Fig. 6.2: Example of an employee structure

Similarty we can define a structure vehicle to store make, model, year and price asin
Fig. 6.3 and structure date to store day, month, year, week as in Fig. 6.4.

struct vehicle
{
char make[10];
char model[10];
char year{10];
float price;
e
Fig. 6.3: Example of an vehicle structure
struct date = |
{
char day(2];
char month{10];
char year{4];
nt week;
5

Fig. 6.4: Example of an date structure

One more way of defining and declaring a structure is by using the keyword typedef
asin Fig. 6.5.

197

—— =
Space for learners I
nofes i

data_type member 1;
data_type member 2;
data_type member 3;
data_type membern;,
}type_name

Fig. 6.5: Syntax for defining a structure
The type name represent structure definition and it can be used to declare structure

| variables.
1ypodl:l’stn,u-:l
{
char day(2;
char month{ 10];
char yearfd];
it week:;
jdate;

Fig. 6.6: Example of a structure date using typedef

STOP TO CONSIDER:

Use of structure_name is optional as in the example below where x,y.z are
structure variables. However it is not recommended to use such a definition
because without structure name it cannot be used in future declarations.

struct

{
/f members

XN

' 6.4 DECLARATIONAND INITIALIZATION OF
' STRUCTURES

In C programming declaration of structure variable is same as declaration of any
other variable of other data types. As for example after defining structure employee

; and structure vehicle as in the above section we can declare structure variables as:

198

® structemployee empl, emp2, emp3;

e struct vehicle v1, v2, v3, vd;
where emp1, emp2, emp3 are vaniables of type struct employee and v1,v2, v3, vd
are variables of type struct vehicle.

It is also possible to combine structure definition and structure declaration in the same
statement as given in Fig. 6.7.

struct vehicle R
i

char make[10];

char model[10];

char year{10};

float price;

pvl, w2, v3, va;

Fig. 6.7: Example of a structure vehicle definition and declaration
Or nypedef can be used to declare structure variables asin Fig. 6.8.

typedef struct

{

char make[10];
char model[10];
char year{10];
float price;

} vehicle;

Fig. 6.8: Example of a structure vehicle definition using typedef

The structure declaration can be

= vehiclevl, v2, v3;
During compilation memory is reserved for structure variables. No memory is allocated
to members of a structure when defined but memory is allocated when structure
variables are declared. In the example given in Fig. 6.9 three structure variables vi,
v2 and v3 are created. The structure vehicle consists of four members make, model,
year each of 10 bytes and member price of 4 bytes making it a total of 34 bytes.
Thus the compiler allocates 34 bytes to each of the variable v1, v2 and v3. The output
of the program is shown in Fig. 6.10.
#include<stdio h>
struct vehicle{ {Definition
char make[10];

Space for learners
notes

19

Space for learners
nofes

char model[10];
char year{10];
float price;

b

void main()

{

struct vehicle vl v2,v3; {MDeclaration
printf(*Address of structure varibles:\n vi=%u ‘n vZ2=%u \n v3}=%u
0" &vl &v2 &v3);

printf{“size of structure in bytes = %d", sizeof{v1)); /iSize of
simiciure

}
Fig. 6.9: Example of a structure vehicle definition using typedef

OUTPUT

Address of structure variable:
vI=65492

v2=65458

vi=65424

size of structure in bytes=34

—

Fig. 6.10: Output of the program in fig. 6.9

STOP TO CONSIDER

When a structure variable is declared it may contain slack/unoccupied bytes
between the members. Therefore even if values of members of two structure
variables are same their comparison may not be equal.

In C programming structure variables can be initialized during compile time. A structure
can be initialized only during the structure variable declaration. It should be noted that
a structure does not allow initialization of the individual members in a structure definition.
For example initialization as shown in Fig. 6.11 is invalid.

struct vehicle '
{
chara='"W";
int b=123;
float c=12.4;
}

Fig. 6.11: Invalid way of initialization in structure definition
)

STOP TO CONSIDER

Following rules must be followed while initializing a structure vanable:

e Members inside structure definition cannot be initialized

s The initialization values inside the braces must maich the order of members
instructure definition

* [tis permitted to partially initialize i.e. first few members can be initialized
remaining members only ai the end can be left blank. By default members
of type integer or float are assigned 0 and members of type character are
initialized to"\0" if they are not initialized.

The example in Fig 6.12 shows three different ways of initializing structure variable
v1, v2 and v3. Tt should be noted that the structure variable v1 is initialized outside
main fimction with the values {“FORD™"FIGO","2013", 6.8} representing respectively
make, model, year and price. Similarly the structure variable v2 is initialized inside
main with values [“HONDA","CITY™,"2018",11.5} whereas the structure variable
v3 is partially initialized o {*MARUTT","BALENO"} representing respectively make
and model. It should be noted that the values “\0" and 0 are assigned respectively to
year and price of structure vanable v3 by default.

Hinclude<sidio.h>

struct vehicle {

char make{ 10];

char model[10];

char year{10];

float price;

pvi={"FORD","FIGO","2015",6.8}; Hinitalization

void main}

{

struct vehicle v2={“HONDA","CITY™,"2018",11.5) ; /initialization
struct vehicle v3={"MARUTI","BALENO"}; Hinitialization
i

Fig 6.12: A sample example showing ways of initialization

6.5 ACCESSING THE MEMBERS OFASTRUCTURE

To access or assign values to any member of a structure variable, member operator
*."is used. This operator is also known as dot or period operator. For example the
program given in Fig. 6.13 creates structure variable p/ & p2, where pl.name, pl.id
and pl_height are used to siore and display name, id and height respectively of a

01

Space for learners

Space for learmers
notes

person. Similarly strepy(p2.name,”John™) copies the name “John™ to the variable
p2.name and p2.id, p2.height is assigned the value 123,6.7 respectively.

#include<stdio h>
struct person |
char name[15];
int id;

float height;

i

void main()

{

struct person pl;
struct person p2;

printf{*in Enter person’s name, id & height \n");
scanfl*%s %d %{",pl.name &pl .id.&pl height);
printfi{** Name: %6s'n id: %d \n height: %" pl.name,pl.id,pl.height);

strepy(p2.name, “John™);

pl.id=123;

p2 height=6.7;

printf{** Name: %s \n id: %ed \n height: %f " p2.name,p2.id,p2. height);
i

Fig. 6.13: Example to access members of a structure using period operator

There are two more ways of assigning and accessing members of a structure when
using pointers. If pir is a pointer to a structure variable then to access the member id
of the structure variable following syntax need to be followed:

. (*ptr)id

- pu-.:-id
The Fig. 6.14 shows an example to access members of a structure using pointers.

—
#include<sidio.h>

I' struct person |

| char name[15];

| int id;

| float height;

k

i

struct person pl;

struct person *ptr;

ptr=&pl; {fimitializing structure pointer
strepy((*pir).name,"John™); ffaccess member ising pointer
(*pir).id=123; /faccess member using pointer
(*ptr) height=6.7; [faccess member using pointer

printfi** Name: %%6s \n id: %od \n beight: %" [* pr).name.(*ptr).id { * pr).height);

strepy(ptr-=name,"Rama’™); /laccess member using pointer
pir->id=444; /laccess member using pointer
pte->height=5.2; /laccess member using pointer

printf{™ Name: %s \n id: %d \n height: %f ptr->name, ptr->id ptr->height);
] -
Fig. 6.14: Example to access members of a structure using pointers

6.6 STRUCTURESASFUNCTIONARGUMENTS

There are two ways in which structure can be used as function arguments. In the first
method entire copy of the structure can be passed 1o the function. As the copy of the
structure is passed to the function so any changes inside the called function is not
visible inside the main function. Therefore it is necessary to return the entire structure
tothe calling function.

In the example given in Fig. 6.15 the function updare accepts structure as argument
and also returns a structure, The structure p/ is initialized inside main and the copy of
pi is passed to the function update. Inside the function wpdate the values of structure
pl is copied to structure p. The structure variable p is updated with new values.
Finally the structure p is returned to the calling section where structure p is copied to
p2 inside main function. The output of the program in Fig. 6.15 is shown in Fig. 6.16.

#include<sidio b~

struct person {
char name[15];

Space for learners

Space for learners

b

intid;

float height;

)

struct person update(struct personp) // function with argument & return
type as structure

{

strepy(p.name,”John™);

pid=123;

pheight=6.7,

retum p,

}

void main{)

{

struct person pl ={“Ram”,357,5.5};

struct person p2;

printf*“\n\n OLD VALUES \n");

printf{*Name: %s \nid: %ed \nheight: %f”,pl name,pl.id,pl height),

p2=update(pl}; /Passing copy of the structure & storing the retumed
result in p2

printf{*\n\n NEW VALUES \n");

printf{*Name: %es \nid: %ed \nheight: %0, pl.name,p2.id p2 height);

}

Fig. 6.15: Example structure used as function argument

ouUTPUT

OLD VALUES

Name: Ram

id: 357 i
height: 5.5

MEW VALUES
Mame: John

id: 123
height: 6.7

Fig. 6.16: Output of program in Fig. 6.15

04

The second way uses pointers to pass the structure. The Fig. 6.17 shows use of
pointers to pass a structure. The address of the structure p1 is passed to the called wﬁ:ﬂ;:‘m‘ﬂ
fimction wpdate. Pointers in the called function are used to update the structure vaniable
pl. The update function assigns values {“John", 123, 6.7} to the members {name,
id, height} of the structure variable pJ. The output of the program in Fig. 6.17 is
shown in Fig. 6.18.

#include<stdio h>

struct person {

char name 15];

int id;

float height;

E

void update{struct person *p) // structure pointer accepts address of the
structure vanable

{
strepy((*p).name,”John™); Massigning values to members of structure

vanable using
(*p)id=123; /f pointers "
(*p).height=6.7;
H
void main()

{
struct person pl; //declaring structure variable pl

update(&pl); I/ passing address of structure variable pl to update
function

printf{*Name: %s \nid: %d \nheight: %f"p1 name.p1.id.p1 height);
}

Fig. 6.17: Use of poiniers to pass a structure

QUTPUT

Mame: John
id: 123
height: 6.7

Fig. 6.18: Output of program in Fig. 6.17

205

Space for learners
notes

6.7 STRUCTURESANDARRAYS

Suppose we want to store details like name, id, and phone of all employees of an
organization. In such a case we need 1o use array of structures 10 store details of each
employee. The example given in Fig. 6.19 shows the way of using array of structures.
Here 100 number of structure variables struct employee emp(100] are created
using an array of structure, Each structure variable is recognized by the index number.
emp[0] represents employee number one, emp |] represents employee number two
and so on. Each of the structure variables are initialized with values taken from the
keyboard inside the for loop.

#include<stdio.h>

struct employee{
char name[15];
mt id;

char phone[10];
HH

void main()

{

struct employee emp(100]; N Army of struciures
mnte,

for(i=0;i<20;i++)

{

printf{*Enter Details {name,id,phone} of Employee no. %d\n™ i);
scanf{*%es %d %s" empli].name &empfi].id empfi].phone);
printf{*nin");

H

fori=0;1<20;i++)

{

printf{*Details of Employee no. %d is: “,i);

printf{“%s %d %", emp[i].name, empfi}-id, emp{i].phone);
printf{"n\n"™);

}

b

Fig. 6.19: Example array of structures

106

The amay of structures is stored in memory like multidimensional array. The example
below depicts how the employee array is stored inside memory.

Emp{0].name Johny
emp{0}.id 123 |
emp{0).phone 9876451212 .
emp| 1].name Rama
emp(1].id 345 =
emp{1].phone 9765432222
emp{2].name Robin —
emp(2].id 0887776543
emp|2].phone 231

6.8 UNIONS

Unions are similar to structures that groups items of different data types into a single
logical unit. Therefore union follows the same syntax as structures. Fig. 6.20 shows
the example of a union that uses the keyword union. The major difference between
union and structure is in terms of memory allocation. While each member of a structure
gets its separate memory location, whereas all members in a union share the same
memory location of the biggest member. That means there can be many members of
different data types ina union but it can handle only one member at a time.

union student
{

int roll;

char gender,
flost height;
B

Fig. 6.20: Definition of a union

For the example given in Fig. 6,20 the compiler allocates the largest memory of 4bytes
required by the member height among the three members (roll, gender, height) of the
union. The example in Fig. 6.21 shows the memory sharing of each member of the
Umon.

100 | 101 102 103

B

Fig. 6.21: Sharing of memory by union members
107

Space for learners

nofes

Space for learners 6.9 INITIALIZINGAN UNION

nofes

Once a union variable is declared, it can be used to initialize one member at a time as
shown in Fig. 6.22.

#include<sidio h>]
union student

i

introll;

char gender,

float height;

Is2; [Aunion variable s2 declaration

void main)

{

union student s1; // union variable s1 declaration
sl.roll=25; Jhunion initialization
printf{*%ed",s1.roll);

}

Fig. 6.22: Initializing union members

However we can see in Fig. 6.23 that when a different member 5/ gender is assigned
a new value s/ gender="M’, the new value supersedes the previous member s/.roll
value. Therefore 57, roll prints a garbage value while s1 gender prints the value ‘M".
' #include<stdio h>

union student

{

int roll;

! char gender;

float height;

}s2; Jfunion variable s2 declaration

void main()

{

union student sl; // union variable s1 declaration
L -

slroll=25; jAmion inmalization

= Space for learners
sl gender="M"; ffanion initialization SR
printf{*%d" s1.roll); /iwill print garbage value for roll
printfi*%ec” 51 .gender), /will print ‘M’
}

Fig. 6.23: Initializing union members

Unlike structure where all members can be initialized as in Fig. 6.24, union vaniable
can be initialized only for the first member and rest of the members can be initialized
by assigning values or by taking input from keyboard as in Fig. 6.25.

struct student |

{

it roll;

char gender;

float height;

H

void main()
{

struct student s1={13,"F",5.5); // structure variable sl declaration &
el
printf{*Roll=%d \n Gender=2%c \n Height=%f",s1 rolLs] gender,s1 height);

Fig. 6.24: Initializing structure members

union student? : ;]
\

mntroll;

char gender;
float height;
b

viorid raind)
{
funion student? s3={13,'F" 5.5}, ERROR INVALID initialization

union student? s4={6.2}; {fINVALID inifialization

Som for lonroraes union studeni255=(15); //VALID initialization for the first
2l member roll
union student2 s6;
| printf{*Roll=%d”, s5.roll); /fprints 15
|
3 printf-\nEnter Genderin™);
| scanf{"%c" &s6.gender); /fnitializing union 56, input from
keyboard
| printf{**in Gender=%¢ “,s6.gender);
!

Fig. 6.25: [nitializing union members

6.10 ACCESSING THE MEMBERS OF AN UNION

To access members of a union same syntax can be followed as with structure ie. use
of dot or period operator along with the union variable as shown in Fig. 6.26.

union student?

{

introll;

char gender;

float height;

)

void main()

{

urion student? s2; /I umion variable 52 declaration
s2.roll=34; /faccessing member roll & initializing
printf{"nRoll=%d " s2.roll); /Prints Roll=34

82 gender="M'; /laccessing member gender &
i v mE Ir "
5 pantf(*inGender=%c “ s2.gender); //Prints Gender=M
52 height=5.3; ffaccessing member height & initializing
printf*\nHeight=24f",s2_ height); //Prints
Height=5.3

}
Fig. 6.26: Accessing the Members of an Union

PR

210

6.11 CHECK YOUR PROGRESS Space for learners
notes

i User-defined data type can be derived by
a) typedef
b) aum
c) sinuct
d) Allofthe mentioned
i cannot be a structure member.
a) Armay
b) Another structure
¢) Function
d) None of the mentioned

i Size of a union is determined by size of the = in the
union.
a) Firstmember
b) largest member
¢) Lastmember
d) Sum ofthe sizes of all members
iv. The size of the union declaration?
union sample
{
char a;
intb[10};
double c;
}s;
{ Assume size of double = 8bytes, size of int = 4bytes, size of char = 1 byte)
a) 13
b) 49
c) 40
d) RO
v. IfAand B are structure and union respectively with same members then
which ofthe following is statement is incorrect?
a) sizeof{A)is greater than sizeof{B)
b) sizeof{A)is less than to sizeof{B)
¢) sizeof{A)is equal to sizeofiB)
d) None of the above

n

Space for learners

i, ‘What will be the output of following program? (Size of int is 4 bytes)
#include<stdio h>
struct student
{
inta,
static int b;
ks

void main()
i
printft“96d”, sizeof{struct student));
H
a) 4
b) 8
¢} Runiime Emor
d) Compiler Emor
vii The below C declaration define *stud’ to be
struct student
{
int id;
float height:
R
struct student *stud|5];
a) A structure of 3 fields: an integer, a float, and an array of 5 elements

b) A structure of 2 fields, each field being a pointer to an array of 5
elements

¢) Anarray, each element of which is a structure of type student

d) An array, each element of which is a pointer to a structure of type
student

vii. Consider the following C declaration
struct sample |
 short arr{5];
union {
floal b;
long c;
1o,

}s:

112

Assume that short, float and long occupy 2 bytes, 4 bytes and 8 bytes,
respectively, The memory requirement for variable s, is
a) 22
b) 18
¢ 14
d) 10
The operators that can be applied on structure variables is
a) Assignment(=)
b) Equality comparison(==)
¢) Noneofthe above
d) Bothofthe above
union sample
i
int a,b;
char arr{8];
b
void maind)
{
printf{*%d”, sizeof{union test));
}
Find the output of above program. Assume that integer is 4 bytes and character
is 1 byte.
a) 8
b) 12
¢) 16
d) None of the above
i unionsample
int a,b;
char arr{4];
HE
void maing)
{
union sample s;
sa=0;
sarr{1]= P
printf{*%es”, s.arr);
)

113

Space for learners

Space for learners

noles

Find the output of above program. Assume integer as 4 bytes and character
as | byte.

a) P
b) Nothing is printed
¢) Garbage character followed by *P’
d) Garbage character followed by ‘P, followed by more garbage
characters
. Find the ouiput of following C program
#include<sidio.h>
struct position
{
inta,b,¢;
)i
void main()
{
struct position posl = {(b=7, c=1, a=2};
printfi{*%ed %ed %d™, posl.a, posl.b, posl.ck;
]
a) 712
b) 271
¢) Emor
d) 217
i If the structure vanable is partially initialized then by default
a) Compilation Emor
b) integer members will be 0
¢) character will be "\’
d) Bothbandc
xiv. If x->y is syntactically correct then
&) xisapoimnter to siructure, ¥ 15 a struciure
b) xisastructure, vy is a structure
¢) ¥ isapointer to structure, X is a struciure
d) xisa pointer to structure, y is a structure member
xv. Which of the following statement is true about usage of structure?
a) Individual members can be assigned Storage class
b) Individual members can be initialized within a structure type declaration
¢) The scope of amember name is confined to the structure within which
it is defined
d) None of the above

214

6.12 ANSWERS TO CHECK YOUR PROGRESS

i,d ii, ¢ iii, b v,c
v, b

vi,d viid vilLb A
xa

xi,b xii,b i xiv,d
XV, C

6.13 SUMMING UP

A structure is a concept that supports grouping of items of different data types into a
single logical unit. A structure must be defined first using the keyword struct before
any structure variables can be declared and initialized. Once a structure is defined
variables can be declared in the definition of the structure by placing the structure
variable between the closing brace and semicolon. During compilation memory is
allocated to members of each structure variable. A structure does not allow initialization
of the individual members in a structure definition. When initializing the structure
variables the order of members in structure definition should match. It is also permitied
o partially initialize the structure variable that is first few members can be initialized
and remaining members can be left blank towards the end. The members which are
nol initialized are set to default values 0 and "\0" respectively for members of type
integer/float and character. To access or assign values to any member of a structure
variable dot or period operator is used with structure variable. Structures members
can also be accessed using pointers like (*ptr).id and ptr->id. Structure can be used
as function arguments either by passing the entire copy of the structure to the function
or by using pointers.

Unions are similar to structures that groups items of different data types into a single
logical unit. Union follows the same syntax as structures. The major difference between
union and structure is in terms of memory allocation. While each member of a structure
gets its separate memory location, whereas ail members of a union share the same
memory location. Also a union can handle only one member at a time. Unlike structures
where all members can be initialized at the same time union can be initialized only for
the first member. To access individual members of a union, dot or period operator 15
used with the union variable.

6.14 LET USSUM UP

« Balagurusamy, E., Computer fundamentals and C Programming, McGraw
Hill Publishing Compary Limited.

s Gottfried, Byron S., Programming with C, McGraw Hill Publishing Company
Limited

15

' Space for learners

Space for learners
naoles

Kanetkar, Y., Letus C, BPB Publication.

Kemighan, B.W., and Ritchie, Dennis M., The C Programming Language,
Prentice Hall Pvt Ltd.

6.15

MODEL QUESTION

Q1
Q2

Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10

Qll

Ql2

Differentiate between Structure and Array.
Define a structure called book consisting of the following members
title, author,publisher, edition, price. Declare a structure variable and initialize
it with some values.
Discuss the rules that are followed while initializing a structure variable.
Explain using an example on how members of a structure can be accessed.
Discuss the different ways of passing a structure as function argument.
Explain the concept array of structures using an example.
Differentiate between Structure and Union.
Explain how the compiler allocates memory to a union variable?
Explain how the members of & union can be initialized?
Consider a structure called rest with three members int, float, char in thai
order. Find out which of the following statements are incorrect and why?
struct test 11,12, 13
structtl, 12, t3;
testtl, 12, 13;
struct testt1={ },
v. structtesttl]];
Vi structtesttl={1+58.9"3"};
vii struct testt1=5, 8.9, 3";
vil structtestt]={1,2,3 };
Consider the following structure declaration
struct test p,q.r;
Find out which of the following statements are legal?

— I

= B

v prind{*%ed” p);

v. scanf™%ed” &q);
Consider a union called test with three members int, float, char in that order.
Find out which of the following statemenis are incomect and why?

L uniontesttl, 2, 3:

116

union 11, t2,13;

test 11,12, 63;

union test t1={ };

union testt]={5,8.9"3" };
union testt1=15,3.9,“3";

S 2 2 pM™

PROGRAMMING EXERCISE
Q13 Define a structure called distance with the following members:

Ql4

Q15

Q16

L Kilometer
o Meter
Write a program 1o do the following:
i Declare two structure variables d1 & d2.
i Initialized] &d2
i Adddl & d2 and display the sum
Define a structure called complex containing two members real and imaginary.
WdlcaC[mgnmﬂﬂ“mﬂﬁﬂh:hlihﬁﬂmmwcﬁqﬂﬂymnplﬂ
number in the form: 2 +4i. Also declare two complex variables and display
their sum.
Define a structure named country with the following members:
o ity name
* Population of the city
s Number of Schools
* Number of Colleges
s Number of Universities
¢ Literacy Rale
Write a C program to do the following:
i To read the details for 5 cifies randomly using an array variable
i To sort the list based on population
m Todisplay the sorted list.
Define a structure called vector of the form (1,2, 3,4, 5,6, 7, 8). WriteaC
program to do the following tasks:
i Todeclare and initialize a structure variable vector.
i Multiply the vector by a scalar value
. Display the vector in the form (1, 2, 3, 4, 5,6,7,8).
iv. Function that accepts two vector as input arguments and retumn their

SuIm.

Q17 Define a structure called ipl with the following members:

» player_name

I

Space for learners
notes

Space for learners !

notes

QI8

* feam _name

» pumber of centuries

» number of half centuries

* number of wickets

s batting average

¢ bowling average
Write a C program to do the following:

L Store information of 15 players

i Display team wise players list along with their batting and bowling

average

Define a structure called hostel. It should have members that include the name,
address, branch, semester, room_number, day_of entry, day _of leaving. Write
functions to perform the following operations:

i To store entries of 10 hostel students.

i To print out room_number of all the students of a given semester.

ii. To print out name and room_number of all the students of the
Computer Science branch.

218

UNIT7 POINTER s Bosriome

noles

CONTENTS

7.1 Introduction
7.2 Objectives
7.3 Definition of Pointer
7.4 Pointer to Array
7.4.1 Pointerto One Dimensional Array
7.4.2 Pointerto Two Dimensional arrays
7.4.3 Pointerto Strings
74.4 Array of Pointers
7.5 Pointer to Structure
7.6 Pointer and Function
7.6.1 Passing Memory Address to Function
7.6.2 Passing Array to Function through Pomters
7.6.3 Passing Structure to Function through Pointers
7.7 Dynamic Memory Allocation
7.7.1 Dynamic Memory Allocation Using malloc() and calloc()
7.7.2 Useof Library Function
7.8 SummingUp
7.9 Possible Questions
7.10 References and Suggested Readings

7.1 INTRODUCTION

In earlier units, we have leamt to declare different types of variables to store
different types of data. But in some situations, we are required to store and access the
addresses of declared variables. So in such cases, we can declare pointer variables.
Pointers are variable that are used to hold memory addresses of another variable of
identical type. In this unit, you will learn about pointers.

7.2 OBJECTIVES

After reading this unit, you are expected to be able to learn:
o WhatisPointer?
& About Pointer arithmetic,

19

Space for learners

Relationship 6f Pointer and Array,
Use of Pointer in Function,
Use of Pointer in Structure and

7.3 DEFINITION OF POINTER

Pointer is a variable which can store the address of another variable of same
type. Syntax of declaring a pointer variable is given as follows:

Data type * variable_Name;

For example: int *ptr;

Here, ptr is a pointer variable with data type int which means that ptr can
store the memory address of any integer variable, Now ptr is a single pointer variable.
We can declare a double pointer variable also which can store the memory address
of any pointer variable of same data type i.e. pointer to pointer. s

For example: int *ptr, **dptr;

Here dptr isadmblepoirm“imdnulypcimmﬂitmmmcmm
address of any single pointer with data type int as shown below.

dptr = &ptr ;

Here dptr stores the address of ptr. The ‘&’ operator used in the above
statements is ‘address of” operator in C programming. The expression &pir will give
the memory address of ptr. Now let us consider the following programming statements:

it P'ipu.‘llipu-;

p=10;

pir = &p;

dpir = &pir;

1154 2256

10 | 1154

Fig. 7.1: Illustration of pointer

0

infig. 7.1 mdhgmnﬁcmmmofﬂrﬂmvuﬂﬁmp.pﬁmd .
dptr are presented where the memory addresses of p, ptr and dptr are assumed to be Space for learners
respectively 1154, 2256 and 6234, Here p is an integer variable which contains an s
integer value 10. The ptr is a single pointer variable with data type integer which
contains the address of the integer variable p. The dpir is a double pointer variable
with data type int which contains the address of the memory address of the single
pointer variable ptr.

Now what will be the output of the following programming statements? t

printf(*\n The address of p=%u”", &p);
printf{*\n Value in p="%u", p);

printfl*“n The address of ptr =%u" , &ptr);
printf{*in Value in ptr="%u”, ptr);

printf{*in The address of dptr="%u", &dptr);
printf{*n Value in p=%u", dptr);

printf{*‘n Value in p="%u",*pir);
printf{*n Value in ptr = %u", *dptr),

Qutputs of the above statements are:
The addressof p= 1154
Valueinp=10

The address of ptr =2256
Value in ptr= 1154

The address of dptr = 6234

Value in dptr = 2256
Valueinp=10

Value in ptr= 1154

Here the * * * operator used in the sbove statements is ‘value of * operator in
C.Somingthism:mmnmm&uvﬂmmdmwmﬁ@wm.

STOP TO CONSIDER
In memory, each byte of memory locations is identified by the CPU witha
unique code which is called as the physical address of the particular memory
location. A pointer variable is used to store the physical address of the first byte
of memory locations allocated for a variable of same type.

111

Space for learners

Rofes

7.4 POINTER TOARRAY

From previous unit, we have leamnt that the elements of an array are stored in
contiguous memory locations as shown in fig. 7.2 In case of array, using the name of
the array we will get the base address of the array. Now using pointer, we can use this
base address to access the array elements.

0 1 2 3 4 3 6

Arr 43 55 123 76 31 90 B9

6010 6012 6014 6016 6018 6020 6022

Fig. 7.2: Array of numbers with memory locations

7.4.1 Pointer to One Dimensional Array

In fig. 7.2, Arr is a one dimensional integer array of size 7 with base address
6010. Now consider the following programming statements.

int *ptrl , *ptr2;

int Amr{7] ;

ptrl = Arr;

pir2 = &Arr{0] ;

printf{*n Base address of Arr=%u", Arr);
printf(*n ptrl =%u", ptrl);

printf{*n ptr2 = %", ptr2);

Output of the above statements:
Base address of Arr= 6010
ptrl= 6010

ptr2= 6010

Here ptr] and ptr2 are two integer pointer both storing address of the same
memory location that is the base address of array Arr| |. So using &’ operator we
can get the address of the element with subscript value 0 in an array which is the base
address of the array. So * Ar or *ptrl or *ptr2 will refer 1o the element with subscript
value 0 in array Ar that is 43.

Now we have the base address of the array and to access all the elements of
the array, we can use pointer arithmetic.

There are four arithmetic operators that can be used on pointers that are ++,
— +, and -

Now after the operation ptr1++, ptr] will point to the location 6012 because
each time ptr is incremented, it will point to the next integer location which is 2 bytes
nexi 1o the current location. So now *pir] will refer the integer value 55 which s the
element with subscript value | in the array Ar. If ptr contains the base address of the
array Ar then ptr + i will point the element with subscript value i in the array Ar.

*(Ar + 0) and * Ar and Ar{0] refer the first element in the array Ar. So *(Ar
+ i) and Ar{i] refers to the (i+1)" element in the array Ar. Actually Arf{i] is intemnally
converted to *(Ar +1i) by the C compiler.

Pointers are also can be compared by using relational operators, suchas ==,
<,and =

7.4.2 Pointer to Two Dimensional arrays

In case of two dimensional arrays, there are two subscripts values to refer an
element. Consider the following programming statement:

int A[4][4];

int * ptr;

pir=A;

Here A[][] is a two dimensional array which can store at most (4 = 4)=16
integer elements. Let us consider the following diagrammatic representation of the
two dimensional ammay Al][|-

0 I 2 3
o | 20 25 8 12
1 24 32 67 54
2 8| e o 1 5o
3 89 % | 21 41

Fig. 7.3: Two dimensional array
Let assume that the memory address of A[0][0] is 2014 which is the base
address of A. In case of a two dimensional array like A, the 0" element of the armay A
is a one dimensional array. So * A or *({ A-+0) will give the memory address of first
element of the first row of A that is the base address of the (* one dimensional armay
inA. In this way, *(A+1) will give the base address of 1* one dimensional array. So
(A+i) will give the base address of i one dimensional array.

113

Space for learners
notes

Space for learners
noles

We know that A[i][j] will refer the element from i* row and j* column. Using
(A+i) , we can refer the i row, so using *(*(A+i)+j) we can refer the particular
element from i* row and j* column in A. Now with this concept we can have the
following statements.

s A[0][0) and *(*(A)) will refer to the same element.

o Ali][j] and *(*({A+i)}+j) will refer to the same element.

o Ali][j] and *(A[i] +j) will refer to the same element.

o A[illj] and *((*A) + (i * col_no+j)) will refer to the same clement, where

col_no is the total number of columns in A.

Now from the above programming statements, pir is a pointer variable and it
stores the base address of A. So *ptr will give the element referred by A[0]{0]. Now
using *(ptr +2*4+3), we can access the element referred by A[2](3] where 4 is the
total number of columns in A as shown in fig. 7.3, In this way we can access A[i]j] by
using *(ptr+i*col_no+j), where col_no is the total number of columns that is 4 in
case of A.

7.4.3 Pointer to Strings

A character pointer can be used to assign the address of a string stored in
some memory location. For example: consider the following programming statements:

char *stl ="“Welcome to GUIDOL";

char *st2;

char str{ | = “Welcome to Gauhati University™;

st2 = str;

Here st] is a character pointer which is used to assign the address of the
string “Welcome to GUIDOL" stored in some memory location. Again str is a character
array which is initialized with a string “Welcome to Gauhati University” and a character
pointer st2 is used to assign the address of the string stored in str.

STOP TO CONSIDER -I

We know that a string is stored in a character array. Now address of a string
means the physical address of the first character of the string that is stored in the

i character array with subscript value 0.

7.4.4 Array of Pointers

An array of pointers is an array which stores a collection of same type of
pointers. For example; Let us consider the following statements:

14

int *Aptr{6];
intA[]={9,5,8,11,90,32};
Aptr{0] = &A[0];

Aptr{1]= &A[1]:

Aptr[2] = &£A[Z];
Aptr[3] = &A[3);

Aptr[4] = &A[4];

Aptr[5] = &Al5].

Here, Aptr]] is an array of integer pointers with size 6 that means it can store
the memory addresses of 6 integer data. In the above statements, Aptr| | store the
addresses of 6 integer data which are stored in the intcger array A.

Now, let us consider the following programming statement:

char *strarr] | ={
“Gauhati University”,
“SGUIDOL™,
“ASSAM”,
“INDIA™

Here strarr{] is a array of character pointers and it is used to store the base
addresses of four strings. So strarr{0] will store the base address of the string “Gauhati
University”. In this way, strarr{ 1], strarr{2] and strarr{3] will store the base addresses
of the strings “GUIDOL” , “ASSAM" and “TNDIA” respectively.

CHECK YOUR PROGRESS
L Multiple choices
(a) inta,*b;
a=10;
b=&a;

printf{(*“%d”, a+*b);

The output of the above statementsis
(i) 10

(1) 20

(i) 21

(v) Error message

3

Space for learners
noles

. (b) I Arr is a two dimensional array then Arrfi] gives
wﬂﬁm’” @ Datastoredin Ari][0]
(i) Address of Arr{i][0]

(i) Addressof Arf0]i]

(iv) Garbage value
(c) Which of the following statement is equivalent to &Am{0][0]
| where Arr is a two dimensional character array?
| ® Am
@ Am{0]
@) Arf][0]
() Both (i) and (ii)

(d) Which of the following statement is equivalent 1o *(*(Armr+1}+)
where Arr is a two dimensional armay?
@ Arti][j]
@ *(Ali]+))
(iii) *((*A)+ (i * C+]j)), where C is the total number of
columns in Arm.
(i) All of the above

(e) Lei us consider the following rmgrmmﬁng stalemenis.

char *S[]=(
“DOL",
“Computer Science™,
“M.ScIT”
R
puts(S[2]);

The ouiput of the above statements is_
| {i) Computer Science

() IDOL

(im) M.SeIT

(iv) None of the above

2, Fill-in the blanks

(a) _ operator is used to access the value stored in a variable
pointed by a pointer.

(b) The base address of a one dimensional array Arr{50] can be
accessed by

126

(¢) Ifpir is a pointer variable which points 1o a character array [

where the base address of the array is 1133 then ptr++ will point
to the memory location
(d) An array of pointers can store

7.5 POINTERTOSTRUCTURE

In previous units, structure has already been discussed. Here, we are going to
discuss how pointer variable can be used to access a struciure variable.

Let us consider the following structure and programming statements:

struct student
i
int roll_no;
char name[40};
float percentage;
B
struct studemt sl;
struct student *stpir,
stptr = &sl;
Here s1 is a variable of the structure struct student and stpr is a pointer with
the datatype struct student. So stpir can store an address of a structure variable of
type struct student using the above programming statement “stptr = &s1"and it is

called as pointer 10 a structure. Now using this pointer variable we can access the
structure variable by using -> operator as given below.

scanf{*%d” &stptr->roll_no);
gets(stptr->name);

scanf{*“%f{", &stptr->percentage);

printf{*n Roll number is = %d", stptr->roll_no);
printf{(*n Name of the student is=);

puts(stptr->name);
printf{*"n Percentage is = %f", stptr->percentage),

7.6 POINTERAND FUNCTION

7.6.1 Passing Memory Address to Function

In unit 5, call by value or pass by value in function has already been discussed
where data is directly passed to functions. [n this section we are going Lo discuss how

17

Space for learners
noles

pointers can be used to pass data to functions. It is also referred as call by address or
call by pointer or pass by address or pass by pointer.

In case of pass by address, the memory addresses of the actual parameters
are passed to functions in the function calling statements and the formal parameters
are the pointer variables that can store these addresses.

A C program to swap two integer numbers that are stored in two variables by
defining a user defined function is shown below. In this program pass by address is
used for argument passing to the user defined function.

Space for learners
mofes

#include <stdio.h>
#include <conio.h>

void swap(int *, int *);

void mam()

{
intnum1 , num32;
clrser();
printf{*n Enter the first number =");
scanf{” ¥od” Lnuml J;
printf{“\n Enter the second number =);
scanfl"%ed™ &num2);
printf{*“in Before swapping the input numbers are =");
printf{*“\n First number = %d" numl);

— printf{*\n Second number =%d" num2);

swap(&num| , &num2),
printf{""\n A fter swapping the input numbers are ="");
printfi*n First number =%d"™ numl };
printf{*\n Second number = %d" num2};
getch();

el

void swap(int *nl , int *n2)

{

int temp;
temp="nl;
*al =*n2,
*nl=temp;

In the above program, swap() is the user defined function whose functionality
i5 10 swap two numbers that are read in the function main(). Here num| and num2 are
the actual parameters and nl and n2 are the formal parameters. In main(), swap() is
called by passing the memory addresses of num1 and num?2 using &(*“address of”)
operator, These addresses are stored in the formal parametersnl and n2 respectively.
Finally, in swap(), swapping of the two numbers is performed by using *(*“value of”)
operator and a variable “temp”.

rSpmt for learners
nofes

7.6.2 Passing Array to Function through Pointers

In case of array, the base address of the array can be passed toa function.
Now using pointer variable and pointer arithmetic we can access the array elements
inside the function as shown below with the programming statements.
{

int Aone[40], Atwo[40][40] ;

int num;

cirser();

printf{*n Enter the number of elements in the array Aone il -
scanf{"%d" &n);

input_one{Aone,nj,

pritf{*\n Display the elementsin the array Aone'n”);

display one{Aonen};

printf{*4n Enter the number of rows in the array Atwo =",
scanf{*%ed" &n);

printf{*n Enter the number of columns in the array Atwo ="");
scanf{*%%d” &m);

input_two(Atwo, n,m);
printf{in Display the elements in the array Atwoln™);
display_two(Atwo,n,m};
getch(),
H
void input_one(int *ptrone, intn)
{
int 1
printf{*“n Enter %d elements into the array”, n);
for{(i=0;i<nmn;i+H)

{

F ¥)

Space for learners
nofes

printf{*inEnter %6d th element =" i+1);

scanf{*%d”, ptrone +i);
}
}
void input_two(int *ptrtwo, int n, int m)
i
int i,j;
for(i=0;i<n;i++)
i
for(j=0;:j<mj++)
{
printf{*‘nEnter (%d,%d) th element=",i, j);
scanf{"%d”, ptrone + i * 40 + j);
}
}
}
void input_display(int *ptrone ., int n)
{
int i
for(i=0;i<n;i++)
i
peintf{*t %d”, *(ptrone-+));
!
!

void display _two(int *ptrtwo, int n, int m)

{
int i,j;
for{(i=0;i<n:i++)
{
for(j=0;j<m;j+t)
i
printf{*\t %d”, *(ptrtwo + i * 40 +));
i
!
}

30

7.6.3 Passing Structure to Function through Pointers Space for learners
mOfeEs

In case of structure also, the memory addresses of structure variables can be
passed to a function and using pointers to structure variables as formal parameters
can be used to store these addresses, Structure variables can be accessed in functions
through these pointers.

A C program is shown in the following part where structure is passed {0 user
defined funciions using pointer to structure.

finclude <stdio h>
#inchude <conio =

struct student
{
int roll_no;
char name[40];
float percentage;

void main()
{
struct student sl , 52,53 ;
clrser();
printf{*\n Enter data for s1 =");
input(&s1);
printf{“n Enter data for s2 =");
input{&sl);
printf{*“n Enter data for s3 =");
input{&s3);
printf{*\n Display data for sl =");
display(&sl);
printf{*n Display data for s2 =");
display(&s2);
printfi*“n display data for s3 =),
display(&s3);
getch();
}
void input{ struct student *st)

N

Space for learners

noles

printf{*\n Enter RollNumber =");
scanf{*Yed” &st->roll_no);
printf{*\n Enter Name =");
gets(st->name);

printf{*n Enter Percentage =");
scanf{™ %" &st->percentage);

void display(struct student *st)
t
printf{*n RoliINumber = %d" st->roll_no);
printfi*\n Name =*);
puts(st->name);
printfi*\n Percentage = %f" st->percentage);

In the above program, formal parameter, “si" is a pointer 1o struciure, “struct
student™, It is used to store the address of the structure variable that is declared in

main ().

7.7 DYNAMIC MEMORY ALLOCATION

Memory allocation during program execution is called dynamic memoryh
allocation. When memory assignment takes place at the runtime of a program, the
miethod is known as dynamic memory allocation. So when we need to allocate memory
atruntime and also release it, dynamic memory allocation is performed.

7.7.1 Dynamic Memory Allocation Using malloc() and
calloe()

In C programming language, dynamic memory allocation can be performed
by using two library functions that are malloc() and calloc(). These functions malloc()
and calloc() are called as dynamic memory allocation functions.

The syntax to allocate memory by using malloc() is:

malloc (N); /* N is the number of bytes to be allocated

in memory */
112

Here malloc() will allocate memory of N bytesand return the address of the
allocated memory. Now if memory allocation is unsuccessful then it will return NULL.

Let ust consider the following programming statements:

int *P;
P=(int *)malloc(2);

Here P is a integer pointer and it store the address of the memory allocated
by malloc() where the size of the allocated memory is 2 bytes as we know the size of
aintt!_.'pcvmiahleinCisEbymThcpuimcrr:mmdbymﬂlm(}islypemmdinm
an integer pointer because P is an integer pointer and malloc() retumns a void pointer,

A void pointer is a pointer that points (o some memory location which is not
associated with any data type. A void pointer can store address of any type of variable
nm:icmb-:lypmﬂﬂhﬁumydaﬂtypc.ﬁdeﬂamﬁﬂns}mmxufawidwmmis:

void * vaniable_name ;
Now the syntax to call calloc() to allocate memory is:

calloc(N,M) /* N is the number of elements for which memory locations
are to be allocated and M the memory size of each
element */

Here calloc() will allocate memory for N elements with M bytes for each
element that means total N * M bytes of memory will be allocated. Now calloc() also
mimnnmidpcinwm&nhughmingnfﬂ:almﬂsmmgemmmwifmam
allocation is successful otherwise it returns NULL.

Let us consider the following programiming statements:

int *P;

P =(int *)calloc(50,2);

Here, P'is a integer pointer and it store the starting memory address of the
memory block to store 50 integer data allocated by calloc(). In the above statement,
the second argument in calloc() is 2 because the size of int variable in C is 2 bytes.
Here also typecasting into integer pointer isused as P is a integer pointer and calloc()
returns a void pointer.

Differences between malloc() and calloc() are given as follows:

33

Space for learners
notes

mofes

Space for learners

= malloc()allocates one block of memory locations to store one element.
It requires only one argument which indicates the size of the memory
block to be allocated. On the other hand, calloc() allocates multiple
blocks of memory locations, It requires two arguments where the first
argurnent indicates number of memory blocks to be allocated and the
second one indicates the memory size of cach blocks.

* The memory allocated by malloc() contains garbage values but in
case of calloc(), it contains zeros.

7.7.2 Use of Library Function free()

Now free() is a library function in C which can be used to release a reserved
memory space.
The syntax to call free() is:

free(P); // P is the address of the memory area to be released

Here free() will release the allocated memory space pointed by the pointer P.
The return type of free() is void that means free() does not return any value.

STOP TD CONSIDER
It is necessary to include the header file “alloc.h” or “stdlib.h" to use malloc()
calloc() and free() ina C program.

Example 7.1 Wnite a C program to create a linear linked list to store a list of student
names. Wiite a function to display data available in the linked list. Use malloc() for
dynamic memory allocation. The linked list creation function should retumn the address
of the first node in the linked list.

#include <stdio.h>
#include <conio.h>
#include <alloc.h>
struci Lnode [l Structure to create nodes of the linked list
i
char st_name{200],
struct Lnode *next;
i
typedef struct Lnode Lnode;

Lnode * List_create{Lnode **);
void List_display(Lnode *);

1M

void main()
{
Lnode *start = NULL;
clrser();
start = List create(&start);
if{start ==NULL)
{
printf{*n Creation of linked list is not possible at this
moment”);
)
List display(start);
getch();

Lnode * List_create(Lnode **start) // Function to create a linked list
{

Lnode *newnode;
char cont:

newnode = (Lnode *) malloc (sizeof (Lnode)); *
Dynamic memory

allocation lo create

anode */

ifinewnode ==NULL)

{
printf{*n Memory allocation is pot possible’™);
return (*start);
H

printf{*in Enter a name to the new node =");
gets(newnode->st_name);
newnode->next = NULL;

135

Space for learners
noles

Space for learners

if{*start==NULL)
*start = newnode; i
else

{
newnode->next = *start;

*start = newnode;

H

printf{*n Input ‘y’ ar *Y" to add more nodes to the
linked list="");

comnt = getch();

twhile{cont =="y" || cont =="Y");
return(* start);

void List_display(Lnode *start) /* Functionto display data available

in the linked list */
i

Lnode *ptr;
if{start==NULL)

printf{“in The linked list is empty™);
else
{

pir = start;

printf*n Data in the linked list are:\n"™);
while(ptr 1= NULL)

{
puis{pir->st_name),
penti{™n”);
pir = ptr->next;

H

o B STOP TO CONSIDER | Soaci for B
Linear linked list isa set of linked nodes where each node consists of two parts nodes
that are data part and address part. Data part contains data and address part
contains address of the next node. The address part of the last node contains
NULL. In this type of data structure, a pointer is also used to contain the
| addressofthe first node.

CHECK YOUR PROGRESS

3. Multiple choices

(a) Which ofthe following operator is used to access a structure vaniable through
a pointer to structure?
o *
() &
(m) ->
(iv) Both (i) and (ii)

{b) Which of the following is a correct way to pass a string to a function where
the string is stored in the character array str{40]?
(i) fun(str)
(i@ fun(&str{0])
(i) fun(®str)
(iv) Both (i) and (ii)

(¢) ___ isusedtoallocate memory at run time.
() malloc()
(@) alloc()
(i) free()
(iv) Both (i) and (ii)

(d) malloc() returnsa______.
(i) Integer pointer
(i) Void pointer
(i) Character pointer
{iv) None of the above

(¢) The memory allocated by calloc() contains___.
(i) Garbage values
(i) Zeros
(i) Omes
{v) None of the above

Space for learners

4. State whether true or false
(a) The memory allocated by malloc() contains Zeros.
(b) free() isused to release the allocated memory pointed by a pointer.
(c) “alloc.h” is included in a C program when dynamic memory allocation is
required to perform by using malloc().
{d) Atwo dimensional array cannot be passed to a function by using a poinier.

7.8 SUMMING UP

In this unit, we have learnt about pointers in C programming. Pointeris a
variable which can store the address of another variable of same type.

Pointer to pointer is a pointer variable which stores the memory address of
any pointer variable of same data type.

Using pointer, we can use the base address of an array to access the array
elements. Ali] can be referred by *(A-+i) and A[i]{j] can be referred by using
((A+i)). Anarray of pointers is an array which stores a collection of same type of
poiniers.

Using pointer variable we can access the structure variable by using >
operator.

In case of array, the base address of the array can be passed to a function
and in the function definition, using pointer variable and pointer arithmetic we can
access the armay elemenis.

Dvnamic memory allocation is the allocation of memory dunng program
execution that is at the runtime of a program. In C programming, dynamic memory
allocation can be performed by two library functions that are malloc() and calloc().
free() is a library function in C that can be used to release a reserved memory space.
To use malloc() , calloc() and free() in a C program, it is necessary to include header
file “alloc.h™ or “stdlib.h .

A void pointer is a pointer that points to some memory location which is not
associated with any data type and it can store address of any type of variable.

ANSWERS TO CHECK YOUR PROGRESS

(a). () , (b). (ii) . (). (1v) . (d). (iv) . (e). (1)

(a). *, (b). Arr, (c). 1134, (d). Collection of similar types of pointers
(a). (i) , (b). (v}, (c). (i), (d). (i) , (e). (i1)

(a). False , (b). True, (c). True, (d). False

= W o

7.9

POSSIBLE QUESTIONS

-tlnl.nlh.ilr—

LA

Define a pointer with suitable example.

What is pointer to pointer? Give example.

Explain call by address with suitable example.
Explain how a two dimensional array can be passed to a function using poinfer.
Give a suitable example.

What do you mean by dynamic memory allocation?

6. Write down the differences between malloc() and calloc().

Explain how pointer arithmetic can be used to access one dimensional and
two dimensional arrays. Give examples.

7.10

REFERENCES AND SUGGESTED READINGS

w

"i

Kanetkar, Yashavant P. Lef us C. BPB publications, 2016

Kanetkar, Yashavant P. Understanding Pointers In C. Bpb Publications,
2003.

Byron Gottfried, Jitender Kumar Chhabra, Programming with C, Schaum's
Outlines Series, Tata McGraw Hill Publications, 2011

Balagurusamy Elappa, Programming in ANSI (*, Tata McGraw Hill
Publications, 2006

Venugopal, K. R., Prasad S.R, Mastering C. Taia McGraw-Hill Education,
2007

139

— —— —

Space for learners

naotes

UNIT8 CPREPROCESSORSAND
COMMAND LINE ARGUMENTS
AND FILES

CONTENTS
.1 Introduction
8.2 Ohbjectives

8.3 CPreprocessor

8.4 Macro Substitution Directives

8.5 FilelInclusion Directives

8.6 Conditional Compilation Directives
8.7 Command Line Arguments

B.8 Files

8.9 File Pointer

8.10 Opening and Closing Files

B.11 Input and Ouiput Operations with Files
£.12 Writing and Reading a Data File

8.13 Unformatted Data Files

8.14 Binary Files

8.15 Summary

B.16 Key Terms

8.17 Answersto Check Your Progress

8.18 Questions and Excrciscs

8.19 Further Reading References and Suggested Readings

8.1 INTRODUCTION

In this unit you will understand the concept of preprocessor directives and its
functions. In C language, whenever user writing a program, it is termed as source
program or source code. Afier compilation the source code is converted to object
code. There is a special program in C language called preprocessor which 1s executed
before compilation of a source program. The C-preprocessor is a collection of
staternents called directives. These directives usually appear before the main function
of a source program. It begins with the symbol # in column one and do not require a
semicolon at the end. In this unit you will leam about the different ways of defining
macro substitution directives, File inclusion directives and conditional compilation
directives. In this unit you will also leam about the uses of two command line arguments

241

Space for learners
nofes

Space for learners
nofes

arge and argv. The arge is an integer type argument and contains the number of
arguments passed and argv isa pointer to an array of strings. In C-language, fileis
required for storing data permanently. It is not possible to preserve the output ofa
program without file. Further, in this unit you will leam about the data files and how the
file pointer is used to accessing data from secondary storage device like hard-disk or
afloppy drive. A file can be open in various file accessing modes and according to the
file access mode, different library functions are used for accessing the data from a
data file. The concept of opening and closing a data file, reading and writing a data file
and the input output operations in binary files shall also be covered in this uniL.

8.2 OBJECTIVES

After going through this unit you will be able to:

e learnabout C preprocessor
learn about different ways of macro substitution
understand the different form of file inclusion directives
learn about the different form of conditional compilation directives
understand the use of command line arguments
understand the concept of files
understand the use of the file pointer
learn about opening and closing a data file
learn about input output operations with files
learn about writing and reading a data file
understand the concept of unformatted data files
understand the concept of binary files

a ® & & @ & & & & & »

8.2 C-PREPROCESSOR

The C-preprocessor is a collection of statements called directives. These directives

usually appear before the main function of a source program. Preprocessor is a program
that processes the source code before it passes through the compiler.

The special syntax rules followed by a C preprocessor are

e Preprocessor directives usually appear at the beginning of a program.
e All preprocessor directives are starting with# symbol in column one.
.
.

Preprocessor directive do not require any semicolon (;) at the end.
There should be only one preprocessor directive on one line.
The preprocessor directive can categorized as
e Macro Substitution Directives,
e File Inclusion Directives and

142

o Conditional Compilation Directives.

8.4 MACROSUBSTITUTION DIRECTIVES

In macro substitution an identifier in a program is replaced by a predefined string or
values.

Syntax

The syntax of a macro substitution directive in C programming language is *
fidefine identifier value or string

Exampies:

#define No 100

#define Institute “idol”

. The constant value 100 is identified by No and “idol” is identified by Institute which is
actually considered as string. At the time of preprocessing, the value 100 and “idol”

are substituted in the place of No and Institute. The identifiers No and Institute are
considered as macros,

Example 8.4.1 Find the square of any given number using macro substitutions.
#include<stdio >
#include<conioh>
Edefine sqr(x) x*x
ind rain()
i
int m;
clrser();
printf{“Enter the number'n™);
scanf{*%ed" &n);
pontf{*“The square of the number is %d™,5qr(n));
getch();
return O
}
The output of the Example 8.4.1 is as follows

e+ Turbo C++ IDE

Enter the nunber
o

The sgquare of the nunber is 4

Explanation: Here sqr(2) is expanded as 2*2.

243

| Space for learners
nofes

Space for learners
notes

Example 8.4.2 Find the absolute value of a given number using macro substitutions

#include<stdio.h>
#include<conio h>
#define abs(x) ((CP0)Ax)(-(x)))
int main{) '

{

intn;

printf{*Enter the numberin”);

scanf{"%ed”,&n);

print{l“The absolute value of the number is %ed" abs{n));
getch();

return 0,

}
The output of the Example 8.4.2 is as follows

Enter the number

The absolute value of the nunber is 4

Explanation: Since -4<0, from the conditional operator abs(-4) is expanded as -
(-4) which is equal to 4.

Example 8.4.3: Find the biggest number from any two given numbers using macro
substitutions.
#include<stdioh>
#include<conio. h>
#define big(a,b) ((a>b)7a:b)
it i)
{
int a,b,result;
clrser();
prntf{* Enter the two numbers\n”);
scanf{"%ed%ed"” &a,&b);
result=big(a.b);
printf{*The biggest number is %od " resuit);
getch();

retaurmn O

}

144

The output of Example 8.4.3 is as follows

e Turbo C++ IDE

Enter the two numbers

28 18

The biggest number iz 28

Explanation: Here the inputted numbers are 20 and 10, according to the condition
from the conditional aperator the biggest number is evaluated as 20.

Mesting of Macro:
A macro can be defined within a macro which is called nesting of macro. Let us take
the following example for implementing the nesting of macro.

Example 8.4.4 Calculate the cube of a given number using macro.

#include<stdio.h>

#include<conio h>

#idefine sq(x) x*x

#define cube(x) (saix)* (%))

it main)
i
int n;
printf{*Enter the number\n™);
scanf{™%ed" &n),
printf{™*The result is %od” ,cube(n));
getch();
retum 0;
i

The output of the Example 8.4.4 is as follows

< Turbo C++ IDE !

Enter the numbep
)

e
The result is 8

| Explanation: Here cube (2) is first expanded into (Sq(2) * (2)) Since sq(2) is still
amacro, it is further expanded into (2 * 2) *{2) which is finally evaluated as 2*

L

Undefining a Macro:
A defined macro can be undefined, using the following statement

#undef identificr
M5

Space for learmers
notes

Space for learners
fofes

Let us take the following example for undefining a macro, which is already defined.

Example 8.4.5

#include<stdio h>
#include<conio.le-
#define TEMP 10
#define TEMP 75

it miamd)

{
printf{*%d" , TEMP);
getch();
return (;

}

Here the variable TEMP is defined as 10 initially, but after that it is undefined and
again defined as 75. So the output of the program is 75.
Defining multi line macro:

Multi line macros can be defined by placing a backslash (\) at the end of each line
except the last one, This feature permits a single macro (i.e. a single identifier) to
represent a compound statement.

Example 8.4.6
#include<stdio h>
#include<conio h==
#define loop for(i=1;i<=4;i++) \
{ !
for(j=1g<=i;j++) !
printf{*%d" j); \
printf{*n"); \
}
mt i)
|
intij;
clrser();
loop
getch();
return (;

146

The output of Example 8.4.6 is as follows

l :7 Turbo C++ DE

8.5 FILE INCLUSION DIRECTIVES

A file inclusion directive is commonly used to include the content of the header files in
a program. A previously written program can be included in a new program by using
file inclusion directive. Extemnal files containing functions or macro definition can also
be included as a part of a program using file inclusion directives.
Syntax:

fiinclude “filename”

#include <filename>

When the filename is included in double quotation mark, then computer searches for
the file in the current directory and then in the standard directonies.
When the filename is given inside angle brackets, then computer will search the file
only in the standard directories.

Some commeonly used header files with #include are as follows.

#include <sidio.h>
Here the header file stdio.h(short for standard input output) contains various input/
output fimctions like printf{),scanf() ete..For using input/output functions, youneed
to include stdio. h at the beginning of a program.
#include=conio.h>
Here the header file conio.h contains all the console input/output functions like clrser(
)zetch{) ete. For using console input/output functions, you need to include conio.h at
the beginning of a program.

#inclode <math.h>
Here the header file math_h contains all the mathematical functions like acos().exp(
)sari(},pow() etc. For using mathematical functions, you need to include math.h at
the beginning of a program.

8.6 CONDITIONALCOMPILATION DIRECTIVES

The conditional directives are used for conditional compilation of the source program
depending on the one or more true or false values.

The most frequently used conditional compilation directives are #if #elif, #else and
Hendif.

47

Space for learners

Space for learners
nolés

Syniax:

#if <constant-expression™
Helse

flendif

#if <constant-expression>

#elif <constant-cxpression>

#endif
The compiler only compiles the lines that follow the #if directive when <constant-
expression> evaluatesto true. Otherwise, the compiler skips the lines that follow until
it encounters the matching #else or #endif.

If the expression evaluates to false and there isa matching #else, the lines between the
#ielse and the #endif are compiled.

#if directives can be nested, but matching #else and #endif directives must be in the
same file as the #if

Example 8.6.1
#include<sidio h>
#include<conio.h>
#define NUM 10
int main()
{
HINLUM =0)
pantf{*“‘nNumber is Zero™);
feliff NUM > 0)
printf{*nNumber is Positive™);
0
printf{*“nNumber is Negative™);
fendif

| getch();

returm 0

3
]

Explanation: In Example 8.6.1, the constant expression of the #if directive evaluates
to false and the constant expression of the #clif directive which is evaluates as
true. So, the output of the program is “Number is Positive™

#ifdef:

If the macro name specified after #ifdef is defined previously in #define directive, then
the statemnent_block is followed otherwise it is skipped. We can say that the corlitional

directive #ifdefis succeeded only for already defined macro.
248

. : |
Example 8.6.2: Space for l'ﬂlrﬂf;—‘
#include<stdio.h>

nofes
#include<conio b=
#define NUM 10

int main()
{
// Define another macro if MACRO NUM is defined
#ifdef NUM
#define MAX 20
Hendif
printf{“MAX number is : %od”,MAX);
getch();
retum 0;

}
The output of Example 8.6.2 isas follows

ev Turbo C++ IDE

Explanation: Since the macro “NUM" is already defined. so it can be defined
another macro as “MAX™ whose value is 20.

Hifndef:
If the macro name specified after #ifndef is not defined previously in #define then the
statement_block is followed otherwise it is skipped. We can say that the conditional
directive #ifndef is succeeded only for undefined macro.

Example 8.6.3

#include<stdio h=

#include<conio.bh>

int main(}

{

#ifndefNUM

#define MAX 20

fendif

printf{*MAX number is: %d”,MAX),

getch();

4%

Space for learners

notes

retum 0

H
The output of Example 8.6.3 is as follows

HAY nunber

Explanation: Here MAX value will take as 20, since the macro “NUM™ is not
defined previously.

8.7 COMMAND LINEARGUMENTS

The command line argurnents represented by arge and argy passed to main function
through command line, The first argument arge must be an integer vanable, while the
second one argv is an array of pointers to characters that is an array of strings. Each
string in this array will represent an argument that is passed to main function. The
value of arge indicates the number of arguments passed.

The following outline indicates how the arguments arge and argv are defined within
the main() function.

main(int argc, char *argv] |)

{

For execution purpose the order of the arguments and the program name follow the

following rule
Program-name argument] argument 2.......ccoeneee Argument n

Here every single itern must be separated from one another either by blank spaces or
by tabs. The second argument argv stored the program name as the first item, followed
by each of the arguments. If a program has n argurnents, there will be (n+1) items in
argv ranging from argv[0] to argv{n] and the first argument arge automatically assigned
the (n+1) value. Consider the following examiple, which will execute from the command
line.
Example 8.7.1
finclude<sidio.h>
finclude<conio.h>
int main(int arge, char *argv|)

{

i

150

printf{”arge=%od\n” argc);
for{c=0;c<arge;+ic)
printf{"“argv[%ed]=%s\n" cargvc]);
getch();

return 0

:

Suppose for example, if the program name is given as hello, and the command line
initiating the program execution as hello welcome to idol, then the output of the

program isas follows.
arge =4

argv [0] =hello.exe
argv[1] = welcome
argv[2] =to

argv|3] =idol

The output indicates that four separate items have been entered from the command
line. The first is the program name, hello.exe, followed by the three arguments welcome,
1oand idol. Each item is an element in the array argv. Here hello.exe is the object file,
resulting after the compilation of the hello.c file. Now if the command line initiating the
program execution is hello welcome *to idol™

The output will be

arge=13

arg[0}=hello.exe

arg[1j=welcome

arg[2]=to idol

Here string “to idol” will be interpreted as a single argument.

CHECK YOUR PROGRESS
. What is a preprocessor directive? What are the different types of
preprocessor directives?
Describe the rules followed by a C-preprocessor.
Describe the rules for defining macros. How can you undefine a macro?
What is conditional compilation directive?
Give examples of sorne commonly used conditional compiler directives.
What is the use of #ifdef?
What is the use of #ifndef?

90 &3S th e e

What are argc and argv?

L. — — — =

151

Space for learners

Space for learners
nofes

8.8 WHY FILES

In computer, the information can be written to and read from secondary memory in
many applications. This type of information stored in the secondary memory in the
form of data file.

The data file allows you to store information permanently and access to information
whenever required. When a programmer need to input huge amount of data for program
execution purpose, it is required to type the data again and again for every execution
of the program. In such situation using file, data is inputted once and it can be easily
used as input file. Moreover transfer of input or output data from one computer to
another can easily be.done by using files.

In C language there are two types of data files

] Stream oriented (or standard) data file.

(i) System oriented (or low-level) data file
The stream oriented data file can be divided in two categories . The first category is
referred as text files. The text file consists of consecutive characters which can be
interpreted as individual data item or as components of strings or numbers.

The second category of stream oriented data file is referred as unformatted
data files. In this unformatted data file, data items are arranged into blocks which
represents more complex data structure, such as arrays and structures. Different sets
of library functions are available for processing the stream oriented file of this type.

System oriented data file are closely related to operating system. This type of
file is more efficient for certain kind of applications. Separate procedures and library
functions are required for accessing the system oriented data files.

8.9 FILE POINTER

When you working with a data file the first step is to establish a buffer area. The
buffer is used as temporary storage area, while data being transferred to computer’s
memory to adata file. The buffer area allows information 1o be write to and read from
data file so quickly.

The buffer area is established in the following manner

FILE *fp;
Where .

FILE - special structure type that establishes the buffer area.

fp => is a pointer variable that indicates the beginning of the buffer area
The structure type FILE is defined within the header file stdio.h.

152

—

s
8.10 OPENINGAND CLOSING FILES Space for learners
notes

A file must be opened before it can be created or processed. The library function
fopen() is used to open a file in different accessing modes.

The general format of fopen() function is as follows
fp=fopen(File_name, “File accessing mode™)
Here fpisthe file pointer vaniable
File name represent the name of the file and
File accessing mode is the manner in which the data file will be utilized.

The fopen() function retums a pointer to the beginning of the buffer area connected
with file. When a file cannot be opened, a NULL value is returned by the fopen()
function.

A data file must be closed at the end of the program regarding to the file. This can be
done with the library function fclose().

The general format of felose() function is as follows
felose(fp); where fp refers to the file pointer.
The accessing mode of file operation must be one of strings from the following tables.

File accssing mode Meaning
e Open an existing file for reading only.

“w" Openanew file for writing only. Ifa file name already
exists, it will destroyed and a new file is created in
its place.

" Open an existing file for appending (i.¢, for adding
new data at the end of file). If the file name of the

specified file does not exists, it will create a new

file.
"+ Open an existing file both reading and writing
e Open anew file name for both reading and writing.

If a file name is already exists, it will be destroyed
and a new file is created in its place.

“at” Open an existing file for reading and appending. If
the file name does not exists, it will create new file.

253

Space for learners

8.11 INPUTAND OUTPUTOPERATIONS WITH
FILES

In file, for handling characters the following functions are used:

pute() Function
putc () is used to write a character to a file. The syntax for pute() function is as
follows
putc{ch.fptr);
Here ch refers to the character variable and
fptr refers to the file pointer

gete() Function
getc () is used to read a character in a file. The syntax for getc() function is as follows
ch=getc(fptr);
Here ch refers to the character variable and
fiptr refers 1o the file pointer.

feof () Function
While reading data, feof{) function locate the end of file. The sysntax of feof{) is as
follows

feoflfptr)
Here fptr refers to the file pointer.

fgete() Function
figete() is used to read a single character from a file. The gete() is a macro while
foete{) is a function which is defined on header file stdio.h. The general format of the

fgete()is
ch=fgete(fp) ;
Here, fpis the file pointer of the file, and ch is the variable that receives the character.

fpute() Function
fpute() is used to write a single character on to a given file. The pute() is a macro
while fpute() is function which is defined on header file stdio.h. The general format of

the fpute() is

fpute(ch,fp);
Here, ch is the character 1o be written and fp is the file pointer to the file to receive the
character.

The following program will create a text file using the putc{) function.
254

Example 8.11.1
finclude<stdio h>
include<conio.h>
void main()
{
char ch;
FILE *fp;
fp=fopen(*“TDOL.bX™,"w™);
clrser();
printf{*“n Type the text and press enter key at the end.\n\n\n™);
while{(ch=getchar()) I="\n")
i
pute{ch,ip);
}
fclose(fp);

The output of the Example 8.11.1 15 as follows

If you want to read the texts file “IDOL.txt™ and count the number of vowels. Then
the program can be writlen as follows

Example 8.11.2

#include<sidio h>
#include<conio h>
#inclhude<ctype b=
void main)
{
char ch;
int count={;
FILE *fp;
clrscr();
fp=fopen("IDOLAxt","r"),
printf{*n The content of the text file is as follows:\n\n\n"),

55

Space for learners
Rofes

while(!feof{fp))
!
ch=gete(fp);
printf{*%c" ch);
switch(toupper(ch))
i

case 'A’;

Space for learners
notes

case 'E':
case ‘I":
case "0

case ‘LI"; counti+;

break;
'
}
printf{*\n'n\n The number of vowels counted in the text file=%d" count);
felose(fp);
getch();

The output of the Example 8.11.2 is as follows

i+ TurbaCs+ DE

Ihed comtent of tha texi Flle L3 as Fillews

tauhatd Univeroity Instltute of Distance and Open laaendng.

The nunbér of vowels cawnted Lr che text [ileo=dd

In the above output, the content of the file is displayed first then the program will
count the number of vowels until it reached the end of file.

Example 8.11.3: Write a C program to read the text file “IDOL.txt" and then count
the uppercase characters present in the text file.

#include<stdio.h>
#include<conio b=
void main()

{

char ch;

int couni={;

FILE *fp;

154

clrser();
fp=fopen(“TDOL.txt™,"r");
printf{*n The content of the text file is as follows:\n\n'\n"),
while(! feofi{ fp))

|

ch=getc(fp);

printf{*“%ec” ch);

if{ch>=65 && ch<=90)

count=count+l1;

1
printf{*\n\n\n The number of uppercase character counted in the text
file=%d" count);

fclose(fp);
getch();
}

The output of Example 8.11.3 is as follows

In the above output, the content of the file is displayed first then the program will
count the number of uppercase character present in the file using ASCII value until
reached the end of file.

In file, for writing and reading integer value the following functions are used

puiw{) Function
putw() function is used to write an integer value from a specified file. The general
format of putw() function is

putw{num,fp);
Here, num is an integer value to be written and fp is the file pointer to a given file.

getw() Function

getw() function is used to read an integer value from a givel file. The general format
of getw() function is

157

Space for learners
naies

‘Space for learners

noles

getw(fp);

Here fp is a pointer to a file to receive an integer value.

The following programs demonstrates the uses of putw() and getw() functions.

Example 8.11.4
#inchude<stdio b>
void main()
{
FILE *ip;
int num;
char ch="n";

fp = fopen(“IDOL. txt","w");
ifl fp == NULL)
{

printf{*\nCan’t open file or file doesn’t exist.”);
exit(0);

do
{

printf{*\nEnter any number :™);
scanf{"%d" , &num),

putw(num,fp),

printf{*nDo you want to another number :™);
ch = getche(),

ywhile(ch=="y"|lch=="Y");

printf{*‘nData written successfully...”);

tclose{fp);

The output of Example 8.11.4 is as follows ' Space for learners
nofes

nter anyg nomher 2 10

B nt Lo anather nunber @

Wi L]
nter any nunber @ JH

iy wou want o anothker nenker @y
FhCur anly riimhey & 30

Do wou want Lo anabher ousbher = _

Example 8.11.5
#include<stdio h>
thinclude<conio.h>

vioid maind)
{
FILE *fp;
int num;
clrser();

fp = fopen(“1DOL.txt","r");

iflfp = NULL)

: 1

prinif{"“\nCan’t open file or file doesn’t exist.”)
exit(D);

printf(*\nData in file...\n");

while((num = getw(fp))!=EOF)
printf{*“\n%d" ,num);

fclose(fp);
getch();

259

Space for learners

nofes

The output of the Example 8.11.5 is as follows :

8.12 WRITINGAND READING A DATA FILE

fprintf{) and fscanfl) are two commonly used library functions for accessing data in
a data file. The details of these two library functions are as given below:

fprintf{) Function
fprintfi) is used to write data to a file. [t has the following form

fprintf{ fptr, “format string”, al a2,.. ..an);

Where
fptr refers to file pointer

al,a2,...................an = refers to variables whose values are written to file

“format string™ = refers to the control string which represents the conversion
£

Note that the separator space is used in the format string to write values of the
variables as they are stored as strings in the file.

fscanf() Function
fscanf{) is used to read data from a file. It has the following form

ficanf{fptr, “format string”, &al &a2,.&an);
Where fptr refers to file pointer

VI R an refers to variables whose values are read form file

“format string” refers to the control string which represents the conversion specification.

e

Note that the separafor space must be given in the format string to read values of
variables. Also the order of the format string must be same as the format string of
fprintf{) function used for writing data to the file.

rewind() Function

rewind() function is used to move the file pointer to the beginning of a file. [t has the
following form.

rewind(fp);

Here fp refers o the file pointer.

Example 8.12.1 A file called customer.dat contains the information of customers
such as customerID, name and balance. Write a C-program to create a file to store
the details of n customer.

#include<stdio =
#include<conio b=
void main()
{
int cid, balance,n,i;
char name[20];
FILE *fp;
fp=fopen(“customer.dat”,"w™);
clrser();
printf{“n How many cusiomers 7");
scanf{"%ed” &n);
for(i=0si<n;it+)
{
printf{*4n'n Enter Customer id name balance for customer %od\”i+1);
scanf(*%d %s Y%od” &cid,name,&balance);
fprintf{fp,"%ed Y6s Yed'n” cid,name, balance);
H
fclose(fp);
}

261

Space for learners

Space for learners
maofes

The output of the Example 8.12.1 is as follows

Turbo €= WE

Encer Cuont 11 Aeil SEeN

Enker Ciig Loy |_l'.l'|."-'|l..!|'|l.ll"lr'

Enter Cuztomer Ld.bafe. hdlan

| Now if you want to read the data file “customer.dat™ and display the customer whose

balances is greater than 2000, the program can be written in the following manner

Example 8.12.2
#include<stdio h>
#include<conio. h>
void main()
{
int cid, balance;
char name[20];
FILE *fp;
fp=fopen(**customer.dat™,"r");
clrser();
printf(*nCustomer 1D Name Balance™);
printf{*n \n");
while(!feof{fp))
{

fscanfifp,"Ved %s Yed\n" & cid, name & balance),
ifibalance>2000)
{
printf{*“n%ed\tu%es\t%d",cid,name, balance);

}

)
fclose(fp),
gelch();
!

The output of Example 8.12.2 is as follows

Turba C-+ DL

Cuntoner_ID

If you want to add new record to the file “customer.dat”, then the program can be
written as follows

Example 8.12.3
#include<adio h=
#include<conio b
#include<ctype h>
void main()
{
int cid balance;
char name[20],ch="Y";
FILE *fp;
fp=fopen(“customer.dat”,"a+");
clrscr(});

while{toupper(chj—"Y")

{

printf{™\n Enter new customer id,name and balance\n'n");
scanf{“YedYas%d” Lcid name &bhalance);

fprintf{ fp,"%6d Yos Yod\n" cid name balance);
printf{*n\n Press y to add more records™);
printfi{*\n\n Press any other key for stop™);
ch=getche();

]

rewind(fp);

prntf(*n'nCustomer 1D Mame Balance™);
printf{*\n——— n");
while(!feof(fp)

{

fscanf fp."¥ed Yos Yed\n"” &cid, name, &balance);
printf{“n%d\t\%s\t%ed” cid name balance);

253

petch(});
felose{Ip);
!

The output of the Example 8.12.3 isas follows
Twrba C+= i

Enter new costoper dd, nane an

L Digeak 18830

8.13 Unformatted Data Files

In some applications information are stored in the form of blocks of data.
These blocks of data generally represent the complex data structure such as an array
ora structure. For such applications instead of the writing to or read from individual
componenis of the blocks (such as members of an array or members of a structure),
it is desirable to read the entire block from the data file or write entire block to data
file. In this situation, two library functions fwrite({) and fread() are used to write 1o or
read from the data file. These two library functions often referred as the unformatted
read write functions and the data file of this type refemred as unformatted data files.
The details of fread() and fwrite() functions are given below

fread() Function:

fread() function is used to read a structure from a file. The general format of
fread() function is

fread(& st.sizeof{st), 1 fptr):

Here , the first argument refers to the address of the structure read from the file.
The second argument refers to the size of the structure.

The third argument refers to number of structure read from a file, Usually itis assigned
iol.

The last argument refers to the file pointer.

Zoed

fwrite() Function:
fwrite() function is used to write a structure to a file. The general format of fwrite()
function is
fuvrite(& st sizeof{st), 1, fpir);
Here, the first argument refers to the address of the structure written to the file.
The second argument refers to the size of the structure.

The third argument refers to number of structure written to file. Usually it is assigned
to 1.

The last argument refers 1o the file pointer.
The following two programs demonstrate the uses of fwrite() and fread() functions.

Example 8.13.1

#include<aidio h>
#include<conio.h=

struct employee
{
int eid;
char name|[25];
float basic;

void main()
{
FILE *fp;
char ch;
siruct employee e;

clrser();
fp= fopen(*Employee.dat™,"w");

ifi fp==NULL)
i
printf(*nCan’t open file or file doesn’t exist.™);
exiti0);

165

Space for learners |
notes

Space for learners

Hofes

do

printf{“\nEnter Employee [D: *);
scanf™%d"” &e.cid);

printf{*Enter Name : *);
scanfi%s" e.name);

printf{*Enter basic salary :),
scanf(“%f" &e.basic),

Pwrite{ &e sizeof{e), |, fpk

printf{*\nDo you want to add another data (y/n) : *);
ch = getche();

twhile(ch="y" ||ch="Y");

printf(*\nData written successfully...”),

felose(fp);

The output of Example 8.13.1 isas follows

i+ Turba C++ DE

i
H LT

anpiher data Lynd 2
X

18
i HBDD.AD
add anncher daca (w/md = y
Fanl

v Fraploves 1D Sadifu
P w = Enter hi salary 7 BYRQ

Example 8.13.2

#include<stdio h>
#include<conio b=
struct Employee

{

int eid,
char name|25];
float basic;

void main()

{
FILE *fp;
char ch;
struct Employee e;
clrser();

fp = fopen("Employee.dat™, “t™);
if{ fp == NULL)

i
printf{(*nCan’t open file or file doesn’t exist.™);

exi{0);

printfi*\oME_[DMName\Basic \n™);

whille{fread(&e sizeofie), 1. ip)=0)

printf{"\n\t%ed\resit%% 21" e.eid,e.name.e basic);

fclose(fp);
getch();
i

The output of Example 8.13.2 is as follows

Turba Ce « IDE

Space for learners

nofes

Space for learners

nofes

i ~ STOP TO CONSIDER:

A program that reads an unformatted data file can utilize a loop that continuous
to read successive records, as long as the value returned by feof is false

8.14 BINARY FILES

Besides of text file, every computer uses another file that is known as binary
file. In text file information is stored as text but in binary file information is stored inthe
formof 0 and 1. This means all the machine language file are actually binary files. For
opening binary file the fopen{) function is used and the file access modes are written
as “wh" and “rb” for writing to and read from the file. Whenever you mention the file
access mode as “w” or “r”, these two notations actually indicate “wt” or “rt” where t
denote the text file. Binary files are handled in different ways as compared to the text

file.

The difference between text file and binary file are as in the following table.

| Textfile Binary file
New line character is converted into No conversion of new line
carriage retum-linefeed combination
before writing to file. Carriage retum-

character when the file is read.

Special character whose ASCII value
is 26 is inserted afier the last character
in the file to mark end of file.

No special character inserted

Numbers are stored as strings of
characters, thus number with more
digits would required more disk space.
e.z. 4321 will occupy 4 bytes of disk
space

Each number occupies same number
of bytes on disk as it occupy in
memory. €.g. 4321 will occupy 2
bytes only

The following program demonstrate the uses of fprintfi) and fscanf{) functions for
writing digits to a binary file and then read the digits form that binary file.

Example 8.14.1
#inchude<stdio.h>
#include<conio h>
void main()

{

int num.j;

FILE *ip;
clrscr(); Space for learners
fp=fopen(*1DOL.doc™,"wb"™);
il fp==NULL)
printf{ “unable to open file'n™);
else
{
for(i=0;i<=10;i++)
i
fprintf{fp,” Yad™ i);
!
fclose(fp);
fp=fopen(*IDOL.doc™,"rb™);
for(i=0;i<=10;i++)
{
fscanf{fp,"%d" &num);
printf{**%ed\n” num);
)
fclose(fp):
)
getch();
H

The output of Example 8.14.1 is as follows

7 Turbs C++ DE

CHECK YOUR PROGRESS i
9. Explain the data file and its type.
10. How can you establish a buffer area?
11. What are the uses of fopen() and fclose() functions?
12, Explain some character handling library functions.
13. Differentiate between getw() and putw() functions.

69

Space for learners

nofes

14. What are the uses of fscanf{)) and fprintf{) functions?
15. Differentiate between fread() and fwrite() functions.
16, What is binary file? '

8.15 SUMMING UP

In this unit you have learned the concept of preprocessors and its functions in
C-programming language. You have leamed here different macro substitution techniques
and its uses in C-programming. You have also learned the concept of file inclusion
directives and conditional compilation directives such as #if #elif #else and #endif.

In this unit you have leamed the concept of the two command line arguments
arpe and argy. The arge count the number of arguments passed and argv represents an
array of pointers to characters that is an array of strings.

Here in this unit you have leamed the concept of file. This is only possible in
file, whenever you required to storing the result of a program for future use. There are
mainly two types of files one is stream oriented data file which is also referred 1o as
standard data file and another one is the system oriented data file which is ofien
referred as low level data file. Here in this unit you have leamed basically about the
stream oniented data files.

Before working with files, your first step is to establish the buffer area which
is used as the temporary storage area of information. In this unit you have learned the
concept of file pointer and its uses for accessing data from a file. There are different
types of file opening modes of fopen() function like “w™ for writing to file,"r" for
reading from file and “a” for appending new data into the file. In this unit you have also
leamed the concept of various input output functions for handling characters like getc(),
fgete(), pute() and fputce() and handling numbers like getw() and putw(). The gete()
and putc() are two macros commonly used to accessa text file. The two library functions
fprintf{) and fscanf{) are commonly used to access data in a data file. In this unit you
have learned the concept of unformatted data file and fwrite() and fread() functions
used to access block of data in unformatted data file. Here you have also learned the
concept of binary file and different library functions for accessing the binary information.
Here in this unit ali the programs have written and executed in Turbo C++1DE. The
turbo C++ IDE offers everything you need o write, edit, compile, link, run, manage
and debug your program. hitps:/www javatpointcom/how-to-install-¢ isone ofthe
example from various available links from which you can easily download and install
Turbo C++ [DE.

8.16 KEY TERMS

« (C-Preprocessor: The C-preprocessor is a collection of statements called
directives.

¢ arpe: Command line argument that indicates the number of parameters passed.
270

L]

argv: Command line argument that indicates an array of pointers to characters
that is an array of strings

Stream oriented data file: The stream oriented data file can be divided in
two categories . The first one is referred as text files and second one is referred
as unformatted data files

System oriented data file : System oriented data file is closely related to
operating system. This type of file is more efficient for certain kind of
applications only.

Binary Files: The binary file stored the information in the form of 0 and 1 All
machine language files are binary file.

8.17

ANSWER TO ‘CHECK YOUR PROGRESS’

. Preprocessor means processing is done before the compilation of the program.

Macro substitution directive, File inclusion directive and Conditional
compilation directive are the preprocessor directives.

The preprocessor directives always written in the beginning of the program
in column one starting with the # symbol. Preprocessor directive do not require
semicolon at the end.

Macro is usually written in capital letter for distinguish it from the general
vanables.

No comma is allowed between the macro name and the identifiers. Macro
can be undefined by using #fundef.

Conditional compilation is used to define a macro depending on condition.
The most frequently used conditional compilation directives are #if felif #else
and dendif.

[f the macro name specified after #ifdefis defined previously in fidefine directive
then the statement_block is followed otherwise it is skipped. We can say that
the conditional directive #ifdef is succeeded only for already defined macro.
If the macro name specified after #ifndefis not defined previously in #define
then the statement_block is followed otherwise itis skipped. We can say that
the conditional directive #ifndef is succeeded only for undefined macro.
There are two command line anguments ange and argv. arge is an integer type
and refers 10 the number of strings in the command line. argy is an armay of
pointers Lo strings.

The data file allows you to store information permanently and acess to
information whenever required. In C language there are two types of data
files

] Stream oriented (or standard) data file.
{ii) System oriented (or low-level) data file

m

Space for learners

10. When you working with a data file the first step is to establish a buffer area.
The buffer area is established as
FILE *fp;
where FILE is the special structure type that establishes the buffer area and
defined on system file sidio.h.
fp is a pointer variable that indicates the beginning of the buffer area.

i1. A file must be opened before it can be created or processed. The library
function fopen() is used to open a file in different accessing modes. The
fopen) function retums a pointer to the beginning of the buffer arca connected
with file. When a file cannot be opened, a NULL value is returned by the
fopen() function. A data file must be closed at the end of the program regarding
to the file. The fclose() function is used for this purpose.

12. The library funtions gete(),fgete().putc() and fputc() are used for handling
character in a text file. The gete{) and putc() are macros while fgete() and
fpute() are two functions which are defined on header file stdio.h.

13. For writing and reading integer value from a file, two library functions putw()
and getw() are used. The general format of putw() function is

putw(num,fpk
Here, num is an integer value to be written and fp is the file pointer to
agiven file.

Space for learners

e

The general format of getw() function is
getwifp);
Here fp is a pointer to a file to receive an integer value.

14. Two library functions fscanfi) and fprintf{) are commonly used to access a
data file. fscanf{) is used for read data from a data file and fprinf{) is used for
writing data infoa data file.

15. fread() function is used to read a block of data from a file and fwrite()
function is used to write a block of daia 1o a file. The block represents the
complex data structure such as an array or a structure.

16. In binary, file information is stored in the form of 0 and 1. All machine language
files are binary file. The file access modes are written as “wb" and “rb” for
winting to or read from a binary file. i

8.18 QUESTIONSAND EXERCISES:
Multiple choice questions
1. Preprocessor means
{a) Processing is done in between the execution of the program
(b) Processing is done before the compilation of the program

172

(c) Processing is done after the compilation of the program
{d) Linking of object program.

A defined macro can be undefined by using

(a) #enddef

(b) Hifdef

(c) #undef

(d) Hdefined

3. The argumeni arge represents

[

{a) pointer to an array
(b) an integer type argument
(c) array of stnng
{(d) only astring
4. Stream oriented data file is known as
(a) Standard data file
(b) Low level data file
{c) Highleveldatafile
(d) None of the above
5. The structure type FILE isdefined on
(a) Inchade file
(b) ctype.h
(c) sidioh
(d) mathh

Answer: 1.(b) 2.(c) 3.(b) 4.{a) 5.(c)

State whether True or False:

Preprocessor directive must require a semicolon at the end.
Multiline macro cannot be defined in C program.

The daia file allows you o store information permanenily.
fgete() is used to read a single character from a file.

It is not possible to write digits into a binary file.

by B Ll B e

Answer: |.False 2 False 3.True 4.True 5.False
Fill in the blanks:
1. Inamacro substitution an identifier in a program replaced by a predefined-

2. System oriented data file closely related to

3. The fopen() function returms a to the beginning of the buffer
area connected with file.

173

Space for learners

noles

4. ___ function isused to read integer value from a file..

—_— S

2 i file store the information in the form of 0-and 1.

Answer: |.value or string 2 operating system 3.pointer 4. getw () 5.Bmnary

Match the following:
1. No conversion of new line (a) teoct files
2. getc() (b) move the file pointer to the beginning a
file
3. rewind() (c) array of strings
4. Store sconsecutive characters. (d) Binary file
5. argv {e) macro

Answer: 1.(d),2.(¢),3.(b),4.(a),5.(c)

Short-Answer Questions

What is a macro?

How is a multiline macro defined?

What are the uses of file inclusion directives?
What is the requirement of file in C-language?
What is text file?

What is system oriented data file?

What is unformatied data file?

What is the use of rewind () function?

. Explain the file pointer.

10. What docs mode “wb”™ mean?

Long Answer Questions
Write a program with a macro to find the area of a triangle.
2. 'Write a program with a macro to find the roots of the quadratic equation.
3. 'Write program with a macro for display the following structure
|
12
123
1234
Explain the two command line arguments with example.
Write a program with conditional compilation for finding the area of a rectangle
Write a program to write and read a data file.
Write a program that reads one character at a time till EOF is reached.
Wirite a program to input numbers in a data file and then read the even numbers
from that file.

© NP WM AW N

ol BB

74

1.

12.

A file called “student.dat™ contains the information of students such as Roll,
name and total _marks. Write a C-program to create a file to store the details
of n students.

. Write a program 1o read the details of those students from the file “student.dat™

whose tolal marks are greater than 500.

Write a program to append new students into the file “student.dat” and display
the updated content of the data file.

Write a program to copy the content of a data file from one to another.

8.19

FURTHER READING REFERENCES AND
SUGGESTED READINGS

Kanetkar, Yashavant P. Let us C. BPB publications, 2016

Byron Gottiried, Jitender Kumar Chhabra, Programming with C, Schaum’s
Outlines Series, Tata McGraw Hill Publications, 2011

Balagurusamy Elappa, Programming in ANSI C , Tata McGraw Hull
Publications, 2006

Jeyapoovan T, A first Course in Programmimng with C, Vikas Publishing
House, 2004

175

Space for learners
notes

